فایلکو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

فایلکو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

دانلود پاورپوینت آزمایشگاه انتقال حرارت

اختصاصی از فایلکو دانلود پاورپوینت آزمایشگاه انتقال حرارت دانلود با لینک مستقیم و پر سرعت .

دانلود پاورپوینت آزمایشگاه انتقال حرارت


دانلود پاورپوینت آزمایشگاه انتقال حرارت

آزمایش اول - انتقال حرارت بطریقه هدایت:

هدف آزمایش:

بررسی قانون فوریه در سیستم های یک بعدی ، اندازه گیری

ضریب هدایت حرارتی.

آزمایش دوم- انتقال حرارت بطریقه جابجایی:

اهداف:

1- بررسی منحنی های سرمایش المان گرم شده تحت جریانهای متفاوت در سرعتهای مختلف

2- محاسبه ضریب انتقال حرارت جابجایی (h) در دو حالت آزاد و اجباری

3- انتقال حرارت از المان گرم شده به صورت عمودی و افقی و مقایسه هر دو حالت  

4- بررسی پروفیل سرعت واثر زبری کانال بروی انتقال حرارت

آزمایش سوم- مبدل حرارتی دو لوله ای:

اهداف:

1- بررسی پروفیل درجه حرارت در حالت جریان همسو و نا همسو

2- بررسی صادق بودن قانون بقای انرژی

3- بررسی دمای لگاریتمی و ضریب کلی انتقال حرارت    

 شامل 50 اسلاید POWERPOINT


دانلود با لینک مستقیم


دانلود پاورپوینت آزمایشگاه انتقال حرارت

تحقیق درمورد انتقال گرما و حرارت محاسبه انتقال گرما در سطوح نانومقیاس 30 ص

اختصاصی از فایلکو تحقیق درمورد انتقال گرما و حرارت محاسبه انتقال گرما در سطوح نانومقیاس 30 ص دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 31

 

  انتقال گرما و حرارت

محاسبه انتقال گرما در سطوح نانومقیاس

دانشمندان با استفاده از یک نانونوک، با منبع گرمایی نانومقیاس، توانسته‌اند یک سطح موضعی را بدون تماس با آن گرم کنند؛ این کشف راهی به سوی ساخت ابزارهای گرمایی ذخیره اطلاعات و نانودماسنج‌ها خواهد بود. همه ساله نیاز بشر به ذخیره اطلاعات بیشتر و بیشتر می‌شود. درک چگونگی انتقال گرما در مقیاس نانو لازمه کاربرد این فناوری تأثیرگذار در ذخیره اطلاعات است. دانشمندان سراسر جهان سعی دارند تا فناوری‌های جایگزینی برای سیستم‌های ذخیره اطلاعات کنونی بیابند تا پاسخگوی نیاز روزافزون جوامع امروزی به ذخیره اطلاعات باشد؛ فناوری گرمایی ذخیره اطلاعات از جمله گزینه‌هایی است که به آن رسیده‌اند.

در این روش، با استفاده از یک لیزر، دیسک مورد نظر برای ذخیره اطلاعات را گرم کرده و به این ترتیب فرایند ثبت مغناطیسی پایدار می‌شود، به طوری که نوشتن داده‌ها روی آن آسان‌تر شده، پس از خنک شدن آن می‌توان داده‌ها را مجدداً بازیابی نمود. با استفاده از این روش، مشکل بحرانی حد ابرپارامغناطیسی که دستگاه‌های ضبط مغناطیسی با آن مواجه‌اند، برطرف می‌شود. در روش‌های کنونی دانشمندان بیت‌های اطلاعاتی را که در دمای اتاق کار می‌کنند، تا اندازه معینی کوچک می‌کنند، اما این بیت‌ها با این کار از لحاظ مغناطیسی ناپایدار شده، از محل خود خارج می‌شوند، در نتیجه اطلاعات روی آنها پاک می‌شود.

بررسی‌های اخیر دانشمندان فرانسوی درباره انتقال گرما بین نوک و سطح به پیشرفت مهمی در زمینه ذخیره گرمایی اطلاعات و دیگر کاربردها منجر شده است. آنها گرمایی را که بیشتر از طریق هوا و به شیوه رسانش، بین نوک سیلیکونی و یک سطح انتقال می‌یابد، محاسبه کردند.

Pierre-Olivier Chapuis از محققان این گروه می‌گوید: ”انتقال گرما در سطح ماکروسکوپی به خوبی شناخته شده است (وقتی برخورد مولکول‌ها در حالت تعادل موضعی ترمودینامیکی باشد با تابع پخش فوریه بیان می‌شود). همچنین انتقال گرما را می‌توان در یک نظام بالستیک خالص (وقتی که هیچ برخوردی بین مولکول‌ها وجود ندارد) محاسبه نمود. اما محاسبه انتقال گرما در نظام میانی، وقتی که مولکول‌ها با هم برخورد دارند، همچنان یک چالش به شمار می‌آید.“

دانشمندان در آزمایش خود از یک نوک دارای منبع گرمایی به ابعاد 20 nm که در فاصله بین صفر تا 50 نانومتری بالای سطح قرار می‌گیرد، استفاده کرده‌اند.

مولکول‌های هوای بین نوک و سطح، در تماس با این نوک داغ، گرم شده و روی سطح دیسک قرار می‌گیرند و گاهی هم قبل از آن با دیگر مولکول‌ها برخورد می‌کنند. این محققان برای اولین بار با استفاده از قانون بولتزمن درباره حرکت گازها، توانستند توزیع گرمایی در این مقیاس و نیز سطوح شارگرمایی را تعیین کنند. آنها نشان دادند که انتقال و انتشار گرما از نوک به سطح در مدت چند ده پیکوثانیه و بدون آن که تماس بین نوک و سطح برقرار شود، انجام می‌گیرد. آنها همچنین دریافتند که در فاصله کمتر از 10 nm این نوک داغ می‌تواند ضمن حفظ شکل، ناحیه‌ای به پهنای 35 nm را گرم کند و در بیشتر از این فاصله، شکل از بین رفته و لکه گرمایی به طور قابل توجهی افزایش می‌یابد.

در این شکل گرما از نوک یک میکروسکوپ نیروی اتمی (AFM) به سطح منتقل می‌شود. ناحیه گرم شده باعث برخورد مولکول‌‌های هوا به یکدیگر شده، درنتیجه یک سطح موضعی معین بدون هیچ تماسی گرم می‌شود.

 

با این روش که پیش‌بینی می‌شود تا سال دو هزار و ده به بازار راه یابد، می‌توان چگالی اطلاعاتی معادل تریلیون‌ها بیت (ترابایت) را دریک اینچ مربع جا داده و چگالی جریان را هم کمتر نمود. از این روش همچنین می‌توان در میکروسکوپ‌های گرمایی پیمایشی که مانند یک نانودماسنج، گرما و رسانش گرمایی در مقیاس نانو را حس می‌کنند، استفاده نمود. در این روش اطلاع از سطح شار گرمایی، برای تشخیص این که آیا به دمای بحرانی


دانلود با لینک مستقیم


تحقیق درمورد انتقال گرما و حرارت محاسبه انتقال گرما در سطوح نانومقیاس 30 ص

تاسیسات ساختمان 120 ص

اختصاصی از فایلکو تاسیسات ساختمان 120 ص دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 165

 

انتقال حرارت هدایتی از یک جدار ساده:

جداره‌های ساختمان برحسب اینکه دمای داخل آن کمتر یا بیشتر از دمای خارج باشد، همواره مقداری حرارت را به صورت هدایت به ساختمان وارد یا از آن خارج می‌کنند. مقدار این انتقال حرارت برای یک جدار ساده از فرمول زیر به دست می‌آید:

 

که در آن:

شدت جریان گرمایی در واحد زمان [Btu/hr] = H

ضریب هدایت حرارتی جدار [Btu. In/ft2 . hr. F] = K

مساحت جدار [ft2] = A

دمای سمت گرمتر [F] = t1

دمای سمت سردتر[F] = t2

ضخامت جدار [in] = X

اکنون به فرمول فوق توجه کنید، شباهت تامی بین آن و فرمول شدت جریان الکتریکی مشاهده می‌شود، بنابراین مقاومت حرارتی واحد سطح جدار را می‌توانیم به صورت زیر تعریف کنیم:

انتقال حرارت از جدار مرکب:

جداره‌های ساختمان اغلب از لایه‌های مختلف با مواد مختلف تشکیل می‌شوند، بطوریکه دیگر جدارة ساده تلقی نگردیده بعنوان جدارة مرکب شناخته می‌شوند. مقاومت حرارتی جدار مرکب برابر خواهد بود با حاصل جمع مقاومت لایه‌های تشکیل دهندة آن:

مقاومت حرارتی جدار مرکب

در جریان حرارتی بین هوای خارج و هوای داخل ساختمان همواره لایة بسیار نازکی از هوا در طرفین جدار ساختمان وجود دارد که به سطح چسبیده و همچون یک مقاومت حرارتی در برابر جریان حرارت عمل می‌نماید. ضریب هدایت حرارتی واحد سطح این لایة بسیار نازک را به f و مقاومت آن را که به مقاومت فیلم هوا مرسوم است به نشان می‌دهند و مقدار آن بستگی به سرعت جریان هوا دارد.

1- دمای طرح خارج ـ دمای طرح خارج عبارتست از میانگین حداقل دمای هوای خارج در زمستان یا حداکثر دمای هوای خارج در تابستان که توسط سازمان هواشناسی طی چند سال ثبت گردیده است.

2- دمای طرح داخل ـ شرایط طرح داخل از نظر دما و رطوبت نسبی، در ساختمانهای مسکونی و تجاری بر پایة شرایط آسایش انسان و در ساختمانهای صنعتی و کارخانجات معمولاً براساس مقتضیات محصول تولیدی آنها بگونه‌ای تعیین می‌گردد که به کیفیت محصول لطمه‌ای وارد نیاید. در تعیین شرایط طرح داخل در ساختمانهای مسکونی و تجاری، علاوه بر توجه به احساس راحتی ساکنین باید دقت نمود که تغییر شرایط طرح در بخش‌های مختلف ساختمان نسبت به یکدیگر یا نسبت به هوای خارج بصورت ملایم و تدریجی صورت گیرد تا بر روی سلامتی انسان اثرات زیانبخش نداشته باشد. از طرفی چنانکه قبلاً ذکر شد، رطوبت نسبی نیز در چگونگی کیفیت هوا و احساس راحتی ساکنین نقش مهمی دارد. با افزایش دمای خشک برای آنکه در احساس راحتی ساکنین تغییری ایجاد نشود، باید رطوبت نسبی را کاهش داد و بالعکس، بعبارت دیگر، در دو محیط با دو دمای خشک متفاوت می‌توان یک احساس را در انسان ایجاد نمود مشروط بر آنکه رطوبت نسبی نیز به نسبت عکس دمای خشک تغییر کند.

پروسة تولید و انتقال حرارت در یک سیستم حرارت مرکزی بدین صورتم است که گرمای لازم جهت جبران تلفات حرارتی ساختمان توسط یک دیگ در داخل اتاقی بنام موتورخانه، بر روی آب یا بخار سوار شده توسط لوله‌های ناقل به مبدل‌های گرمایی مستقر در اتاق‌ها از قبیل رادیاتور یا کنوکتور منتقل می‌گردد. مادة ناقل حرارت پس از انجام تبادل حرارتی در اتاق مجدداً به دیگ برگشت داده می‌شود تا چرخة فوق بار دیگر تکرار می‌گردد. تمام مراحل این عملیات را می‌‌توان با وسایلی از قبیل ترموستات و غیره بطور مؤثری کنترل نمود.

سیستم‌های حرارت مرکزی را از جنبه‌های گوناگونی می‌توان طبقه‌بندی نمود که در مباحث آینده با هر یک از آنها آشنا خواهیم شد:

1- از نظر مادة ناقل حرارت ـ آبگرم، آب داغ، بخار، هوای گرم.

2- از نظر چگونگی توزیع گرما در اتاقها ـ با جابجایی طبیعی هوا (رادیاتور ـ کنوکتور)، با جابجایی اجباری هوا (فن کویل)، تشعشعی.

3- از نظر چگونگی گردش آب در سیستم ـ با گردش طبیعی، با گردش اجباری (توسط پمپ).

نفوذ طبیعی هوا عموماً تحت تأثیر یکی از عوامل زیر صورت می‌گیرد:

الف ــ سرعت باد ـ سرعت باد باعث ایجاد فشار در سمت مشرف به باد و همچنین خلاء ملایمی در سمت داخل ساختمان شده سبب نفوذ هوای خارج از درز درها، پنجره‌ها و غیره به داخل می‌گردد.

ب ــ خاصیت دودکشی ـ اختلاف دمای فضاهای داخل و خارج ساختمان و نتیجتاً اختلاف چگالی هوا داخل و خارج باعث صعود هوای گرم از طریق راه‌پله‌ها و آسانسورها و سایر قسمت‌هایی که می‌توانند حالت دودکش داشته باشند شده نفوذ هوای خارج را به داخل ساختمان موجب می‌شود. در زمستان نفوذ هوا از پایین ساختمان و رانش هوا از بالای ساختمان و در تابستان برعکس خواهد بود.

مقدار هوای نفوذی بستگی دارد به میزان کیپ بودن درها و پنجره‌ها، ارتفاع ساختمان، کیفیت روکار ساختمان، جهت و سرعت وزش باد و یا مقدار هوایی که برای تهویه یا تعویض در نظر گرفته می‌شود. تهویة هوا به منظور تأمین اکسیژن مصرف شده توسط ساکنین و یا خروج دود و گرد و غبار ناشی از بعضی وسایل در مکانهایی مثل کارخانجات، امری ضروری است. این مهم ممکن است به طور طبیعی با بازکردن درها و پنجره‌ها و یا به صورت اجباری توسط بادزن صورت گیرد. با ورود هوای خارج مقداری از حرارت داخل ساختمان بصورت گرمای نهان در اثر اختلاف رطوبت نسبی داخل و خارج و مقداری نیز به صور ت گرمای محسوس ناشی از اختلاف دماهای خشک داخل و خارج، تلف می‌گردد.

ضرایب اضافی در محاسبات تلفات حرارتی :

در محاسبات ذکر شده، شرایط برای همة جداره‌ها یا اتاقها قطع نظر از موقعیت آنها نسبت به جهات


دانلود با لینک مستقیم


تاسیسات ساختمان 120 ص

سیستم حرارت مرکزی

اختصاصی از فایلکو سیستم حرارت مرکزی دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 39

 

سیستم حرارت مرکزی

اساس کار سیستم حرارت مرکزی بر این است که حرارت از یک منبع انرژی به قسمتهای مختلف ساختمان انتقال می یابد. برای انتقال حرارت وجود سیال واسطه ای چون آب، بخار، هوا و روغن لازم است که ناقل حرارت بین منبع انرژی و دستگاههای گرم کننده باشد.

سیال با دریافت حرارت از منبع انرژی حرارتش بالا می رود و در تبادل کننده، گرمای خود را به محل (اطاق و سایر قسمت ها) میدهد و سرد می شود و مجدداً برای کسب حرارت به منبع برمیگردد. سیستم های مختلف حرارت مرکزی عبارتند از:

حرارت مرکزی با آب (گرم – داغ)، حرارت مرکزی با بخار، تهویة گرم، تهویة مطبوع و حرارت مرکزی تشعشعی:

انواع مختلف حرارت مرکزی با آب که متداول ترین نوع حرارت مرکزی است و همچنین شناخت وسایل و دستگاههای تشکیل دهنده سیستم در همین فصل بررسی میشود و در فصل های بعد انواع دیگر حرارت مرکزی و تهویة مطبوع که در ساختمانها استفاده می شوند و همچنین تهویة مطبوع تابستانی، مورد مطالعه قرار می گیرد.

سیستم حرارت مرکزی آبی

سیستمی که در آن ناقل حرارت، آب باشد، آن را حرارت مرکزی آبی گویند. در این نوع سیستم آب در دیگ با دریافت حرارت گرم می شود و یا این که به طور غیرمستقیم در یک مبدل حرارتی گرم و به وسیله لوله به دستگاه های گرم کننده رادیاتور، کنوکتور، فن کویل و واحدهای گرم کننده و نظایر آن ارسال می شود و گرمای خود را به محل می دهد وسرد می شود و مجدداً به دیگ برمی گردد و این مقدار تجدید می شود .

آب به عنوان بهترین ناقل گرما در حرارت مرکزی مورد استفاده قرار می گیرد، زیرا در همه جا به حد کافی و ارزان یافت می شود. همچنین گرمای ویژة آب به نسبت زیاد و خواص مناسبی در زمینة انتقال حرارت دارد، خاصیت مهم دیگر آب در تاسیسات حرارت مرکزی که حائز اهمیت است، قابلیت تنظیم درجه حرارت آب است ه از نظر اقتصادی بسیار مهم است. این خواص باعث شده است که گرمایش با آب در ساختمانهای مسکونی، به منظور ایجاد هوای گرم و تهیه آب گرم مصرفی ساختمانها استفاده شود. همچنین برای گرمایش حمام ها و گرم کردن پرس ها و غیره به کار میرود که در این حالت آن را گرمایش صنعتی می نامند.

تقسیم بندی سیستم حرارت مرکزی آبی

حرارت مرکزی با آب، به صورت مختلفی طرح ریزی و تقسیم بندی شده است که انواع زیر را می توان نام برد:

1- از نظر درجه حرارت ، به سیستم حرارت مرکزی با آب گرم و سیستم حرارت مرکزی با آب داغ.

2- از نظر درجة حرارت، به سیستم حرارت مرکزی با آب گرم و سیستم حرارت مرکزی با آب داغ.

3- از نظر گردش آب، به سیستم حرارت مرکزی طبیعی و سیستم حرارت مرکزی اجباری (پمپی).

در سیستم حرارت مرزکی با آب گرم، درجه حرارت آب پایین تر از نقطه جوش آب در فشار جو است، در حالی که درجة حرارت آب در سیستم آب داغ، بالاتر از نقطه جوش در فشار آتمسفر است.

چون فشار هوا در شرایط معمولی یعنی در ارتفاع سطح دریا معادل 760 میلی متر سطح جیوه و نقطه جوش آب در این فشار 100 درجه سانتی گراد است، پس میتوان درجة 100درجه سانتی گراد را به عنوان مرز بین حرارت مرکزی با آب گرم و حرات مرکزی با آب داغ قرار داد. البته صحیح تر است که نقطه جوش را به عنوان مرز انتخاب کنیم، چون در این صورت سیستم آب گرم به این ترتیب مشخص میشود که درجه حرارت آب باید از درجه حرارت تبخیر آن پایین تر باشد و در این حال در سیستمهایی که در محل های مرتفع تری قرار دارند، حد این دو سیستم از 100 درجه کم تر خواهد بود. برای بیان حالت دوم یعنی تقسیم بندی از نظر فشار، میتوان چنین توضیح داد که اگر سیستم حرارت مرکزی با اتمسفر هوا ارتباط داشته باشد، سیستم بازو اگر با هوای خارج ارتباط نداشته باشد، سیستم بسته نامیده می شود. این تقسیم بندی تا حدودی با تقسیم بندی سیستم آب گرم و سیستم آب داغ ارتباط دارد، زیرا اغلب سیستم حرارت مرکزی با آب گرم از نوع سیستم آب گرم به صورت سیستم بسته و سیستم آب داغ در اثر فشار استاتیکی ارتفاع هوا ارتباط دارد، یعنی به صورت سیستم باز عمل میشود.

برای به جریان انداختن آب گرم در سیستم حرارت مرکزی نیروی فشاری لازم است که در سیستم طبیعی نیروی دورانی لازم آب در اثر اختلاف وزن مخصوص آب به خاطر اختلاف درجة حرارت در داخل دیگ به وجود می آید و در سیستم اجباری این فشار به وسیلة پمپ مخصوص تأمین می شود و در این حالت کار سیستم تابع ایجاد نیروی خارجی است. سیستم های حرارت مرکزی آبی و دیگر سیستم ها از سه قسمت اصلی تشکیل شده اند:

1- مواد حرارت یا گرم کننده: مولد حرارت در سیستم آبی، دیگ آب گرم است و در بعضی از سیستم ها ممکن است حرارت از مادة دیگری که قبلاً گرم شده است به وسیلة مبدل حرارتی به سیستم هدایت شود.


دانلود با لینک مستقیم


سیستم حرارت مرکزی

مطالعه و بررسی جریان سیال و انتقال حرارت

اختصاصی از فایلکو مطالعه و بررسی جریان سیال و انتقال حرارت دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 191

 

مطالعه و بررسی جریان سیال و انتقال حرارت

فصل اول

مقدمه

1-1 جدایش جریان

محدوده مقادیر لزجت در سیالات مختلف بسیار وسیع است. مثلاً لزجت هوا در فشارها و درجه حرارتهای معمول، نسبتاً کوچک است. این مقدار کوچک لزجت در بعضی شرایط، نقش مهمی در توصیف رفتار جریان ایفا میکند. یکی از اثرات مهم لزجت سیالات در تشکیل لایه مرزی است.

جریان سیالی که بر روی یک سطح صاف و ثابت حرکت میکند را در نظر بگیرید. به تجربه ثابت شده است که سیال در تماس با سطح به آن میچسبد (شرط عدم لغزش). این پدیده باعث میشود که حرکت سیال در یک لایه نزدیک به سطح کند شود و ناحیهای به نام لایه مرزی بوجود میآید. در داخل لایه مرزی سرعت سیال از مقدار صفر در سطح به مقدار کامل خود افزایش مییابد، که معادل سرعت جریان در خارج از این لایه است. بعبارت دیگر، در لایه مرزی سرعت افقی در امتداد عمود بر سطح تغییر میکند، که این تغییرات در نزدیکی سطح بسیار شدید است. یک نمونه از توزیع سرعت در لایه مرزی تشکیل شده بر روی سطح یک جسم در شکل 1-1 نشان داده شده است.

 

لایه مرزی نزدیک یک صفحه تخت در جریان موازی با زاویه صفر نسبت به امتداد جسم، بعلت اینکه فشار استاتیکی در کل میدان جریان ثابت باقی میماند، نسبتاً ساده است. از آنجا که خارج از لایه مرزی سرعت ثابت باقی میماند و همچنین به خاطر اینکه در جریان بدون اصطکاک معادله برنولی معتبر است، فشار نیز ثابت باقی خواهد ماند. بنابراین فشار در امتداد لایه مرزی هم اندازه با فشار در خارج از لایه مرزی، ولی در فواصل مشابه است. بعلاوه در فاصله x مشخص از ابتدای صفحه، فرض میشود که فشار در امتداد ضخامت لایه مرزی ثابت باقی میماند. این اتفاق بطور مشابه برای هر جسمی با شکل دلخواه، زمانی که فشار خارج لایه مرزی در امتداد طول جسم تغییر کند نیز رخ میدهد. بعبارتی میتوان گفت فشار خارجی بر لایه مرزی اثر میگذارد. بنابراین برای حالتی که جریان عبوری از یک صفحه تخت داریم، فشار در سرتاسر لایه مرزی ثابت باقی میماند.

دو اثر بسیار مهم در جریان سیال، اثرات اینرسی و لزجت است. رابطه بین این دو اثر با یکدیگر مشخص کننده نوع جریان است. این رابطه بصورت پارامتر بدون بعد Re یا عدد رینولدز که برابر با اندازه نسبت نیروهای اینرسی به لزجتی است، تعریف میشود. نسبت نیروی اینرسی به نیروی لزجت برای یک المان سیال با بعد سطح، به وسیله رابطه زیر که همان عدد رینولدز است تعریف میشود:

(1-1)

بنابراین وقتی عدد رینولدز بزرگ است، اثرات اینرسی حاکم میشود و زمانی که کوچک است، اثرات لزجت قویتر است. شایان ذکر است که مفهوم عدد رینولدز در رابطه با مرزها که بر جریان اثر میگذارد، یک کمیت موضعی است، بعبارتی انتخابهای مختلف طول مشخصه L در محاسبه عدد رینولدز، منجر به مقادیر مختلفی برای این پارامتر خواهد شد. بنابراین جریان بر روی یک جسم ممکن است که محدوده وسیعی از اعداد رینولدز را شامل شود که بستگی به محلی دارد که مطالعه بر روی آن انجام میشود. بنابراین در بحث جریانی که از روی یک جسم عبور میکند، معمولاً طول مشخصه L بگونهای انتخاب میشود که نمایانگر یک بعد کلی از جسم باشد.

اگر حرکت ذرات سیال موجود در لایه مرزی به اندازه کافی به وسیله نیروهای اصطکاکی کاهش یابد، جدایش جریان بوجود میآید. بعبارتی دیگر میتوان گفت، جدایش جریان بدلیل کاهش زیاد اندازه حرکت یا مومنتوم جریان نزدیک دیوار اتفاق میافتد. میتوان با یک بحث هندسی در خصوص مشتق دوم سرعت u روی دیوار، پدیده جدایی جریان را تجزیه و تحلیل کرد.[1]

معادله بقای مومنتوم در لایه مرزی در امتداد محور x بصورت زیر است:


دانلود با لینک مستقیم


مطالعه و بررسی جریان سیال و انتقال حرارت