فایلکو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

فایلکو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

دانلود پایان نامه تعیین محل بهینه DG با در نظر گرفتن شاخص های قابلیت اطمینان به روش PSO

اختصاصی از فایلکو دانلود پایان نامه تعیین محل بهینه DG با در نظر گرفتن شاخص های قابلیت اطمینان به روش PSO دانلود با لینک مستقیم و پر سرعت .

دانلود پایان نامه تعیین محل بهینه DG با در نظر گرفتن شاخص های قابلیت اطمینان به روش PSO


دانلود پایان نامه تعیین محل بهینه DG با در نظر گرفتن شاخص های قابلیت اطمینان به روش PSO

با توجه به روند رو به رشد استفاده از تجهیزات الکترونیکی حساس به افتادگی ولتاژ در مصارف صنعتی، مسکونی و تجاری، ارائه روشی به منظور بهبود قابلیت اطمینان و کاهش خاموشی های ناخواسته (ناشی از افتادگی ولتاژ) از اهمیت ویژهای برخوردار میباشد.

از سوی دیگر مسایلی همچون تجدیدساختار، مسایل زیست محیطی، مشکلات و محدودیتها در احداث خطوط انتقال جدید، سبب ورود روز افزون سیستمهای تولید پراکنده شده است.

واحدهای تولید پراکنده با توجه به مشخصات، تکنولوژی و مکان اتصال به شبکه، میتوانند تأثیرات مثبتی از جمله بهبود قابلیت اطمینان را روی شبکه های توزیع بوجود آورند. لذا با افزایش استفاده از تولیدات پراکنده و همچنین مسائل فنی و مالی این تکنولوژیها، مسائل جدیدی از جمله تعیین ظرفیت و مکان اتصال این تجهیزات به شبکه مورد بررسی قرار گرفته است.

در این پایان نامه روشی برای جایابی منابع تولید پراکنده ارائه شده است. روش ارائه شده، مبتنی بر الگوریتم بهینه سازی اجتماع ذرات با هدف بهبود شاخصهای قابلیت اطمینان، پروفیل ولتاژ، تلفات و کمینه کردن هزینه های سرمایه گذاری شبکه میباشد.

اما از آنجا که در جایابی و تعیین ظرفیت منابع DG با چندین معیار (شاخصهای قابلیت اطمینان شبکه و سود سیستم) روبرو هستیم، بهترین انتخاب از لحاظ تعداد، ظرفیت و مکان نصب منابع با استفاده از روش تصمیمگیری چند معیاره (AHP) مشخص می گردد.

مقدمه:

این تحقیق به بهینه سازی شاخص های قابلیت اعتماد سیستم های توزیع انرژی الکتریکی- از دیدگاه کیفیت توان – با حضور منابع تولید پراکنده اختصاص دارد. امروزه در کنار تجهیز سیستم ها، قابلیت اعتماد آنها به طور جدی مطرح بوده و جزء لاینفک عملکرد آنهاست. در ارزیابی قابلیت اعتماد میزان توانایی سیستم در ارائه عملکرد صحیح محوله محک زده می شود، بنابراین می تواند به مجرائی جهت بهبود آن سیستم تبدیل گردد. این بحث در سیستم های قدرت نیز از اهمیت ویژه ای برخوردار است. با توجه به وسعت سیستم قدرت و نحوه ارتباط بخش های تولید، انتقال و توزیع با یکدیگر، رده های سلسله مراتبی HLI و HLII و HLIII مطرح گردیده و سیستمهای توزیع در رده HLIII مورد بررسی دقیق قرار می گیرند. شبکه توزیع گسترده ترین بخش سیستم قدرت است که نقاط مصرف را به منابع انرژی
الکتریکی ارتباط داده و از نظر جغرافیایی مساحت بسیار زیادی را تحت پوشش قرار می دهد. بنابراین هر بهینه سازی به ظاهر کم اهمیتی چون در ابعاد وسیع اعمال می گردد، می تواند صرفه جویی زیادی در هزینه ها را به دنبال داشته باشد.

فصل اول: مقدمه

1-1- تعریف و اهمیت مسئله

این تحقیق به بهینه سازی شاخصهای قابلیت اعتماد سیستمهای توزیع انرژی الکتریکی- از دیدگاه کیفیت توان- با حضور منابع تولید پراکنده اختصاص دارد. امروزه در کنار تجهیز سیستم ها، قابلیت اعتماد آنها به طور جدی مطرح بوده و جزء لاینفک عملکرد آنهاست. در ارزیابی قابلیت اعتماد میزان توانایی سیستم در ارائه عملکرد صحیح محوله محک زده میشود، بنابراین میتواند به مجرائی جهت بهبود آن سیستم تبدیل گردد. این بحث در سیستم های قدرت نیز از اهمیت ویژه ای برخوردار است. با توجه به وسعت سیستم قدرت و نحوه ارتباط بخشهای تولید، انتقال و توزیع با یکدیگر، رده های سلسله مراتبی HLI و HLII و HLIII مطرح گردیده و سیستمهای توزیع در رده HLIII مورد بررسی دقیق قرار میگیرند. شبکه توزیع گستردهترین بخش سیستم قدرت است که نقاط مصرف را به منابع انرژی الکتریکی ارتباط داده و از نظر جغرافیایی مساحت بسیار زیادی را تحت پوشش قرار میدهد. بنابراین هر بهینه سازی به ظاهر کم اهمیتی چون در ابعاد وسیع اعمال میگردد، می تواند صرفه جویی زیادی در هزینه ها را به دنبال داشته باشد. مورد دیگر جایگاه ارزیابی قابلیت اعتماد در سیستمهای توزیع به حجم وسیع اتفاقات و خرابیهای بوجود آمده مستقل از گستردگی مداری آن مربوط میگردد. بر این اساس ارزیابی قابلیت اعتماد شبکههای توزیع از اهمیت و اولویت ویژهای برخوردار خواهد بود. از سوی دیگر در شبکه های توزیع امروزی، به خصوص با روند رو به رشد خصوصی سازی و رقابتی شدن بازار برق، هدف اولیه شرکتهای توزیع پایین آوردن هزینه های مربوط به بهره برداری، نگهداری و ساخت شبکه خود و همزمان بالا بردن قابلیت اطمینان شبکه، کیفیت برق و رضایت بیشتر مشترکین میباشد. یکی از روشها برای پاسخ گویی به رشد بار و نیز تامین سطح مشخصی از قابلیت اطمینان، استفاده از منابع تولید پراکنده میباشد. تولید پراکنده معمولاً به واحدهای تولیدی با ظرفیت کمتر از 10 مگاوات گفته میشود که به طور مستقیم به شبکههای توزیع یا سرویس مشترکین متصلند. تکنولوژیهای مختلفی از جمله توربینهای گازی کوچک، پیلهای سوختی، توربینهای بادی، سلولهای خورشیدی و…. در واحدهای تولید پراکنده مورد استفاده قرار میگیرد.

قابلیت اعتماد در سیستمهای قدرت گستره زیادی داشته و تاکنون فعالیتهای تحقیقاتی در این خصوص بیشتر به دو بخش تولید و انتقال معطوف بوده و به بخش توزیع توجه کمتری شده است. شاید یکی از دلایل این کار مقیاس بسیار بالایی از خرابی باشد که می تواند از این بخشها منشاء گیرد. اما تعداد خرابیها در سیستم – بسیار گسترده – توزیع نیز قابل توجه بوده و قرار دادن آن در درجه های پایین اولویت می تواند موجب تحمیل هزینه های سنگینی شده و نمیتواند استدلال عملی دقیقی داشته باشد.

بحث قابلیت اعتماد شبکه های توزیع زمینه های فراوانی جهت تحقیقات داشته و بکارگیری علوم مختلف از جمله ریاضیات پیشرفته و علوم کامپیوتر به تنوع و کارائی روش های مربوطه میافزاید. به همین دلیل مطالب، مقالات و کنفرانسهای علمی ارائه شده در این ارتباط پیشرفت روزافزونی را نشان میدهد، اما در عین حال در اکثر مطالعات انجام شده کمتر به ارزیابی همزمان شاخصهای قابلیت اطمینان و مباحث کیفیت توان پرداخته شده است.

لذا در این پایان نامه، شاخصهای قابلیت اطمینان سیستمهای توزیع بر اساس قطعیهای ناشی از فلش ولتاژ در نظر گرفته شده اند. از  دلایل این امر و رویکرد به مسائل کیفیت توان میتوان به موارد زیر اشاره کرد:

1- حساسیت بیشتر تجهیزات الکتریکی کنونی در مقایسه با تجهیزات مورد استفاده در گذشته.

2- افزایش استفاده از تجهیزاتی که موجب کاهش کیفیت برق میگردند.

3- افزایش آگاهی مشترکین و مصرف کنندگان انرژی الکتریکی از مقوله کیفیت برق و آگاهی از تاثیر کیفیت برق بر عملکرد مناسب و عمر مفید تجهیزات.

4- تاثیر متقابل تجهیزاتی که باعث عدم کیفیت برق در یک شبکه به هم پیوسته میشوند.

روشهای متعددی در خصوص مدل سازی و ارزیابی قابلیت اطمینان شبکه های توزیع مطرح و ارائه شده است و تحقیقات و مطالعات در این زمینه همچنان ادامه دارد. به طور کلی روشهای ارزیابی قابلیت اطمینان شبکه های توزیع را میتوان به دو دسته ی عمده ی تحلیلی و شبیه سازی تقسیم نمود. در روشهای تحلیلی که کاربرد فراوانی در مطالعات مهندسی قابلیت اطمینان سیستمهای توزیع دارند، فیدر و تجهیزات مربوطه در قالب ریاضی به صورت اجزای سری یا موازی مدل میشوند و شاخصهای مربوطه در زمان نسبتاً کوتاهی محاسبه میشوند.


فهرست مطالب:
چکیده 1
مقدمه 2
فصل اول : مقدمه 3
1) تعریف و اهمیت مسئله 4 -1 
2) پیکربندی پایان نامه 6 -1 
فصل دوم : مفاهیم اساسی قابلیت اعتماد 9
1) مقدمه 10 -2 
2) مباحث پایه ای قابلیت اعتماد 10 -2 
1-2 ) تعاریف قابلیت اعتماد 10 -2 
2) مفاهیم کلی 11 -2- 2 
3-2 ) مدهای خطا 14 -2 
4-2 ) قابلیت اعتماد سیستم قابل تعمیر 16 -2 
3) مروری بر روشهای ارزیابی قابلیت اعتماد 19 -2 
4) خلاصه 24 -2 
فصل سوم : ارزیابی قابلیت اعتماد سیستم های توزیع 25
1) مقدمه 26 -3
2) ساختار شبکه های توزیع 26 -3
3)رده های سلسله مراتبی قابلیت اعتماد و معرفی شاخص ها 28 -3
4) فلش ولتاژ 31 -3
1-4 ) دامنه فلش ولتاژ 33 -3
2-4 ) طول دوره زمانی فلش ولتاژ 34 -3
5) نکاتی در رابطه با ارزیابی قابلیت اعتماد سیستم های توزیع 39 -3
6) روشهای ارزیابی قابلیت اعتماد سیستمهای توزیع 40 -3
7-3 ) محاسبه تابع هدف 43
8) محاسبه تابع سود 45 -3
9) انتخاب تعداد بهینه منابع تولید پراکنده 46 -3
10 ) خلاصه 50 -3
فصل چهارم : مدلسازی اثر تولیدات پراکنده بر روی قابلیت اطمینان
سیستم های توزیع 51
1 مقدمه 52 (1 -4
2 دلایل رویکرد به تولیدات پراکنده 54 (2 -4
1-2 ) مزایای تولید پراکنده برای مصرف کنندگان 54 -4
2) مزایای تولید پراکنده برای شرکت های برق 55 -2- 4
2-2-4 )مزایای ملی منابع تولید پراکنده 55
3-4 ) جزیره شدن 55
4-4 ) مشخصه عملکردی تکنولوژیهای تولید پراکنده 57
5-4 ) مدلسازی تولیدات پراکنده 57
فصل پنجم : الگوریتم پیشنهادی 59
1-5 ) مقدمه 60
61 (PSO) 2-5 ) روش بهینه سازی اجتماع ذرات
1-2-5 ) تعاریف و مقدمات 62
2-2-5 ) انواع توپولوژی و اصل همسایگی 63
64 PSO 3-5 ) انواع الگوریتمهای
68 PSO 4-5 ) پارامترهای
با الگوریتمهای تکاملی 73 PSO 5-5 ) مقایسه
6-5 ) نتیجه گیری 74
فصل ششم : شبیه سازی 76
1-6 ) مقدمه 77
2-6 ) مشخصات شبکه مورد آزمایش 77
3-6 ) سناریو های مورد مطالعه 81
4-6 ) خلاصه سناریو ها و نتایج 87
5-6 ) جمع بندی 88
8 فصل هفتم : نتیجه گیری و پیشنهادات 9
1-7 ) نتیجه گیری 90
2-7 ) پیشنهادات 92
پیوستها 94
پیوست الف) پخش بار در شبکه های توزیع 95
پیوست ب) تصمیم گیری چند معیاره 99

شامل 124 صفحه فایل pdf


دانلود با لینک مستقیم


پایان نامه مطالعه تطبیقی اسکان غیررسمی با اسکان رسمی با تاکید بر شاخص های کمی و کیفی مسکن

اختصاصی از فایلکو پایان نامه مطالعه تطبیقی اسکان غیررسمی با اسکان رسمی با تاکید بر شاخص های کمی و کیفی مسکن دانلود با لینک مستقیم و پر سرعت .

پایان نامه مطالعه تطبیقی اسکان غیررسمی با اسکان رسمی با تاکید بر شاخص های کمی و کیفی مسکن


پایان نامه مطالعه تطبیقی اسکان غیررسمی با اسکان رسمی با تاکید بر شاخص های کمی و  کیفی مسکن

 

 

 

 

 

 

 

مقطع: کارشناسی ارشد

فرمت پایان نامه: ورد ( Word) 

تعداد صفحات: 140 صفحه

--------------------------------

فهرست مطالب

فصل اول : طرح تحقیق

مقدمه

طرح مسئله

ضرورت و اهمیت تحقیق

اهداف تحقیق

فرضیه های تحقیق

قلمرو تحقیق

روش تحقیق

شیوه گردآوری اطلاعات

سابقه تحقیق

فهرست منابع

فصل دوم :چارچوب نظری

تعاریف و مفاهیم

اسکان غیررسمی

طبقه بندی نظریات اسکان غیررسمی

ویژگیها ، خصوصیات و شرایط زیست اسکان غیررسمی

نتایج و اثرات اسکان غیررسمی

توانمند سازی

تاریخچه اسکان غیررسمی در ایران

مسکن

نظریه های مسکن

سیاست های بین المللی مسکن

ابعاد گوناگون مسکن

مقوله مسکن و سکونت از دیدگاه برنامه ریزی شهری

شاخص ها

شاخص های انتخابی پژوهش

فهرست منابع

فصل سوم : سیمای اسلامشهر

اسلامشهر و جایگاه آن در استان تهران

مجموعه شهری تهران و اسکان غیررسمی در آن بعنوان علمی ترین ویژگی

تاریخچه اسلامشهر

فهرست منابع

فصل چهارم : روش شناسی

روش امتیاز

رتبه بندی شاخص های مسکن

روش ارزیابی

روش پیشنهادی : مقایسه مجموع میانگین ها

فهرست منابع

فصل پنجم : تجزیه و تحلیل و نتیجه گیری

شاخص ها و کاربرد آنها در مطالعات تطبیقی

شاخص های مورد مطالعه و داده های مربوط به آنها

آزمون فرضیات

جمع بندی

 


دانلود با لینک مستقیم


دانلود پایان نامه پیش بینی پیشرفت نانوتکنولوژی با کمک شاخص های علم و فناوری

اختصاصی از فایلکو دانلود پایان نامه پیش بینی پیشرفت نانوتکنولوژی با کمک شاخص های علم و فناوری دانلود با لینک مستقیم و پر سرعت .

دانلود پایان نامه پیش بینی پیشرفت نانوتکنولوژی با کمک شاخص های علم و فناوری


دانلود پایان نامه پیش بینی پیشرفت نانوتکنولوژی با کمک شاخص های علم و فناوری

پیشبینی پیشرفت نانوتکنولوژی با کمک شاخصهای علم و فناوری

 

 

 

 

لینک پرداخت و دانلود *پایین مطلب*

فرمت فایل:Word (قابل ویرایش و آماده پرینت)

تعداد صفحه:48

فهرست مطالب :

پیش‌بینی پیشرفت نانوتکنولوژی با کمک شاخصهای علم و فناوری 1

مرکز جدید نانوتکنولوژی ارتش آمریکا 11

همکاری تایوان با کانادا در زمینة نانوتکنولوژی 14

گزارشی از شرکتهای نانوتکنولوژی ژاپن 16

تلاش برای توسعة نانوتکنولوژی در اروپا 18

سرمایه‌گذاری در نانوتکنولوژی 18

امتیازی برای ساخت حسگرهای زیستی 20

اولین نمایشگاه بین‌المللی نانوتکنولوژی در سوئیس 21

اندازه‌گیری؛ چالشی در نانوتکنولوژی 23

ذخیرة 250 ترابیت در یک اینچ مربع 25

حسگرهای هیدروژنی جدید 27

تولید هزاران کیلو نانوذرات در یک شرکت نانومواد 28

دو موفقیت بزرگ در ترانزیستور تک سلولی 30

تهیة زیروژلهای کروموفوریک 32

توسعة کریستال فوتونیک 34

انستیتو نانوتکنولوژی نظامی 35

اختراع ابزار آشکارسازی DNA با درجة تفکیک بالا 42

چکیده :

قرار است نانوتکنولوژی یکی از فناوریهای کلیدی و کارآمد قرن 21 شود. قابلیت اقتصادی آن، حاکی از وجود بازاری بالغ بر چندصد میلیارد یورو برای این فناوری در دهة بعد است. بنابراین نانوتکنولوژی موجب جهت‌دهی فعالیتهای بسیاری از بخشهای صنعتی و تعداد زیادی از شرکتها در جهت آماده‌سازی آنها برای این رقابت جدید شده است. در همین زمان دولتمردان در بخشهای تحقیق و توسعه در سراسر دنیا نیز در حال اجرای برنامه‌های تحقیقاتی خاص در زمینة نانوتکنولوژی هستند تا آیندة کشورهای خود را به وضعیتی مطلوب برسانند. هدف این مقاله، استفاده از شاخصهای تکنولوژیکی و علمی برای پیش‌بینی پیشرفت اقتصادی و مقایسة وضعیت کشورهای مختلف است.

1- مقدمه

علوم نانو در دو دهه گذشته، پیشرفت بزرگی حاصل کرده است. ما شاهد کشفیات علمی و پیشرفتهای تکنولوژیکی مهمی بوده‌ایم. به عنوان مثال، این پیشرفتها شامل اختراع میکروسکوپ تونل‌زنی پیمایشگر (STM) در سال 1982 ]1[ یا کشف فولرینها در سال 1985 می‌باشد]2[. در حال حاضر تعداد اندکی از محصولات مبتنی بر نانوتکنولوژی به استفادة تجاری رسیده‌اند. با این وجود، آیا دانش واقعی علمی، جوابگوی اشتیاق جهانی نسبت به این فناوری هست ؟ تا چه حد احتمال دارد که بازار جهانی در طی 10 تا 15 سال آینده به هزار میلیارد دلار در سال برسد]3[؟

ارزیابی قابلیت فناوریهای تکامل یافته کار آسانی نیست و برای یک فناوری جدید مثل نانوتکنولوژی، این کار دشوارتر است. البته در پیش‌بینی سعی می‌شود از شاخصهایی استفاده شود که توانشان در پیش‌بینی قابلیت دیگر فناوریهای جدید به اثبات رسیده باشد. دو تا از واضح‌ترین شاخصهای پیش‌بینی، تعداد مقاله‌های علمی و تعداد اختراعات ثبت شده هستند. اولی معمولاً شاخص خوبی برای فعالیتهای علمی و دومی برای قابلیت انتقال نتایج علمی به کاربردهای عملی است. شکل 1 تکامل تدریجی انتشارات و اختراعات نانوتکنولوژی از شروع دهة 1980 تا 1998 را نشان می‌دهد. اطلاعات انتشارات جهانی نانوتکنولوژی از داده‌های Science Citation Index (SCI) اقتباس شده است. اختراعات نانو، آنهایی هستند که در European Patent Office (EPO) در مونیخ ثبت شده‌اند. اختراعاتEPO داده‌های بسیاری از کشورها را در بر می‌گیرد. از نظر گسترة کار و هزینة بالا، منطقی به نظر می‌رسد که مخترعین از اختراعات به صورت تجاری بهره‌برداری کنند. لیستی از کلمات کلیدی علوم و فناوری نانو جهت دستیابی به انتشارات، اختراعات و روشها منتشر شده‌است]4[.

تعداد انتشارات در سالهای 1980 و 1985 نسبتاً اندک است، اما در سالهای بعد سیر صعودی می‌یابد و از سال 1986 به بعد سرعت افزایش آنها محسوس می‌باشد. این تغییر ناگهانی را می‌توان به اختراع میکروسکوپ تونل‌زنی پیمایشگر در چند سال قبل از آن]1[، آغاز حضور وسایل تحقیقاتی مفید در آزمایشگاههای تحقیقاتی، دانشگاهی و صنعتی و نیز توجه تحقیقات به سوی مقیاس نانو نسبت داد. افزایش سرعت انتشار مقالات همچنان ادامه پیدا کرده و سیر صعودی آنرا می‌توان ناشی از دسترسی به میکروسکوپ نیروی اتمی که گسترة کاربرد وسیعتری نسبت به STM در مواد غیرهادی دارد (اختراع در سال 1986 ]5[) و نیز کشف مولکول C60 در سال 1985

2[ و یا نانولوله‌های کربنی در سال 1991 ]6[ دانست. افزایش تعداد انتشارات در بازة زمانی 1989 تا 1998 بسیار چشمگیر است؛ جهش از 1000 مقاله تا بیش از 12000 مقاله در سال 1998.

میانگین رشد سالانه معادل 27 درصد بوده و رشد سالیانه از 10 تا 80 درصد در نوسان است. اطلاعات بدست آمده از دفتر ثبت اختراعات ایالات متحده]7[ نیز رشدی مشابه با اطلاعات اروپا نشان می‌دهد.

تعداد اختراعات ثبت شده، شاخص‌ مناسبی برای اندازه‌گیری ظرفیت آزمایشگاهها جهت انتقال نتایج تحقیقات به مصارف صنعتی می‌باشد. شکل (1) بیانگر گسترش تعداد اختراعات نانوتکنولوژی در EPO و انتشارات علمی در یک دوره یکسان می‌باشد. به طور معمول، تعداد اختراعات پیرو الگوی انتشارات علمی، البته با تأخیر زمانی محسوسی می‌باشد. منحنی فوق در تمام سالهای 1981 تا 1998 رشد مشخص 28 تا 180 عددی اختراعات را با ضریب رشد %7 در دهة 90 نشان می‌دهد. منحنی اختراعات نوسانات بیشتری را نسبت به منحنی انتشارات نشان می‌دهد. این امر به این علت است که هرگاه تعداد داده‌ها کمتر باشد، نوسانات آماری تاثیرات بیشتری بر روی آنها می‌گذارد. به علاوه پیشرفتهای صنعتی در هر سال تأثیر بیشتری بر روی اختراعات دارد.

تکامل فعالیتهای تکنولوژیکی و علمی نانوتکنولوژی را می‌توان با فناوریهای قبلی مقایسه کرد. در وهلة اول می‌توان از مدل توسعه تکنولوژیکی عمودی (Lineal) استفاده کرد. گراپ]8[، برای چنین مدلی که در شکل (2) به آن اشاره شده است، هشت مرحله را ارائه داده و تکامل از تحقیقات بنیادی تا ورود آن به تولیدات را تشریح نموده است. مرحلة (1) زمان شروع کار تحقیقاتی علمی را نشان می‌دهد. هنگامی که فناوری شروع به ظاهر شدن می‌کند، پیشرفت بیشتری در علوم مشاهده می‌شود (مرحله 2). در مرحلة (3) درک اصول علمی بیشتر شده و اولین نمونه‌های تکنولوژیکی ظاهر می‌گردند.

در مرحلة 4 مشکلات انتقال فناوری به کاربردهای تجاری نمایان می‌شود و در مرحلة 5 پیشرفت در علوم و فناوری راکد می‌ماند. با جهت‌دهی مجدد تحقیقات صنعتی، فرصتهای جدیدی ظاهر می‌شود (مرحله 6) و استفاده‌های تجاری که باعث شروع تحقیقات هزینه‌بر صنعتی می‌شود آشکار می‌گردد (مرحله 7). نهایتاً ورود به تمام بازارها انجام شده و با تولید محصولات حاصل از اختراعات، میزان تحقیقات انک اندک کاهش می‌یابد (مرحلة 8).

2[ و یا نانولوله‌های کربنی در سال 1991 ]6[ دانست. افزایش تعداد انتشارات در بازة زمانی 1989 تا 1998 بسیار چشمگیر است؛ جهش از 1000 مقاله تا بیش از 12000 مقاله در سال 1998.

میانگین رشد سالانه معادل 27 درصد بوده و رشد سالیانه از 10 تا 80 درصد در نوسان است. اطلاعات بدست آمده از دفتر ثبت اختراعات ایالات متحده]7[ نیز رشدی مشابه با اطلاعات اروپا نشان می‌دهد.

تعداد اختراعات ثبت شده، شاخص‌ مناسبی برای اندازه‌گیری ظرفیت آزمایشگاهها جهت انتقال نتایج تحقیقات به مصارف صنعتی می‌باشد. شکل (1) بیانگر گسترش تعداد اختراعات نانوتکنولوژی در EPO و انتشارات علمی در یک دوره یکسان می‌باشد. به طور معمول، تعداد اختراعات پیرو الگوی انتشارات علمی، البته با تأخیر زمانی محسوسی می‌باشد. منحنی فوق در تمام سالهای 1981 تا 1998 رشد مشخص 28 تا 180 عددی اختراعات را با ضریب رشد %7 در دهة 90 نشان می‌دهد. منحنی اختراعات نوسانات بیشتری را نسبت به منحنی انتشارات نشان می‌دهد. این امر به این علت است که هرگاه تعداد داده‌ها کمتر باشد، نوسانات آماری تاثیرات بیشتری بر روی آنها می‌گذارد. به علاوه پیشرفتهای صنعتی در هر سال تأثیر بیشتری بر روی اختراعات دارد.

تکامل فعالیتهای تکنولوژیکی و علمی نانوتکنولوژی را می‌توان با فناوریهای قبلی مقایسه کرد. در وهلة اول می‌توان از مدل توسعه تکنولوژیکی عمودی (Lineal) استفاده کرد. گراپ]8[، برای چنین مدلی که در شکل (2) به آن اشاره شده است، هشت مرحله را ارائه داده و تکامل از تحقیقات بنیادی تا ورود آن به تولیدات را تشریح نموده است. مرحلة (1) زمان شروع کار تحقیقاتی علمی را نشان می‌دهد. هنگامی که فناوری شروع به ظاهر شدن می‌کند، پیشرفت بیشتری در علوم مشاهده می‌شود (مرحله 2). در مرحلة (3) درک اصول علمی بیشتر شده و اولین نمونه‌های تکنولوژیکی ظاهر می‌گردند.

در مرحلة 4 مشکلات انتقال فناوری به کاربردهای تجاری نمایان می‌شود و در مرحلة 5 پیشرفت در علوم و فناوری راکد می‌ماند. با جهت‌دهی مجدد تحقیقات صنعتی، فرصتهای جدیدی ظاهر می‌شود (مرحله 6) و استفاده‌های تجاری که باعث شروع تحقیقات هزینه‌بر صنعتی می‌شود آشکار می‌گردد (مرحله 7). نهایتاً ورود به تمام بازارها انجام شده و با تولید محصولات حاصل از اختراعات، میزان تحقیقات انک اندک کاهش می‌یابد (مرحلة 8).

و...

NikoFile


دانلود با لینک مستقیم


دانلود پایان نامه تقسیم بندی رنگینه ها در شاخص رنگ (Color Index)

اختصاصی از فایلکو دانلود پایان نامه تقسیم بندی رنگینه ها در شاخص رنگ (Color Index) دانلود با لینک مستقیم و پر سرعت .

دانلود پایان نامه تقسیم بندی رنگینه ها در شاخص رنگ (Color Index)


دانلود پایان نامه تقسیم بندی رنگینه ها در شاخص رنگ (Color Index)

تقسیم بندی رنگینه ها در شاخص رنگ (Color Index)

 

 

 

 

 

 

لینک پرداخت و دانلود *پایین مطلب*

فرمت فایل:Word (قابل ویرایش و آماده پرینت)

تعداد صفحه:175

فهرست مطالب :

تقسیم بندی رنگینه ها در شاخص رنگ Color Index 8

مواد تعاونی (کمکی) در رنگرزی ۱۰

سختی گیر آب ۱۰

مواد تر کننده (خیس کننده) ۱۱

مواد ضد جابجایی (ضد مهاجرت) ۱۲

مواد یکنواخت کننده ۱۴

مواد نگهدارنده تعلیق (دیسپرس کننده) ۱۷

اکسید کننده ها ۱۸

موضع رنگرزی در مراحل مختلف تولید ۱۹

رنگرزی توده (رنگرزی همزمان با تولید الیاف) ۱۹

ب: رنگرزی الیاف باز ۲۰

ج: رنگرزی فتیله ۲۰

-I رنگرزی بویین نخ ۲۱

-III رنگرزی چله ۲۲

فصل دوم ۲۳

رنگرزی الیاف سلولزی با رنگینه های مستقیم ۲۳

آشنائی ۲۳

قدرت جابجایی (مهاجرت) رنگینه های مستقیم ۲۶

فصل سوم ۲۹

رنگرزی الیاف سلولزی با رنگینه های راکتیو ۲۹

آشنائی ۲۹

ب: سختی آب ۳۳

ج: حل رنگینه ۳۳

د: اوره ۳۴

هـ : الکترولیت ۳۴

ز: میل جذبی و تثبیت ۳۵

رنگرزی رمق کشی (غیر مداوم) با رنگینه های راکتیو ۳۶

رنگرزی با رنگینه های راکتیو (رمازول) باوینچ ۳۶

رنگرزی با رنگینه های راکتیو (رمازول) باژیگر ۳۸

– I رنگرزی در ۴۰ درجه سانتیگراد ۳۸

– II رنگرزی در ۶۰ درجه سانتیگراد ۳۸

– III رنگرزی در ۸۰ درجه سانتگیراد ۳۸

رنگرزی با رنگینه های راکتیو به روش نیم مداوم ۴۰

روش پد – بچ یک حمامی ۴۲

روش چرخش گرم ۴۲

روش پد – بچ دو حمامی ۴۳

نسخه و دستور رنگرزی: ۴۴

رنگرزی با رنگینه های راکتیو به روش مداوم ۴۵

دستور رنگرزی: ۴۷

روش دو حمامی شوک قلیا ۴۹

نسخه و دستور رنگرزی: ۴۹

محاسبه زمان تعویض محلول رنگینه در شاسی ۵۰

ویژگیها و ساختار شیمیایی پنبه ۵۳

واکنشهای پنبه در برابر مواد رنگی ۵۵

رنگهای مستقیم روی پنبه ۶۲

رنگهای مستقیم دندانه ای روی پنبه ۶۵

رنگهای دیازول ۶۵

روش تهیه حمام دیازوتاژ ۶۶

روش رنگرزی ۶۷

رنگهای گوگردی ۶۸

رنگرزی الیاف سلولزی ۷۰

تئوری رنگرزی پنبه با رنگ مستقیم: ۷۳

پدیده عمومی رنگرزی: ۷۸

بار سطحی الیاف: ۸۱

روش رنگ لیف در نقطه تراز (تعادل): ۸۳

دسته بندی رنگهای مستقیم ۸۵

دسته سوم: ۸۸

مواد کاتونیک: ۹۱

سرعت نسبی جذب رنگ با آب و سلولز: ۹۸

۳- غلظت نمک : ۱۰۳

ویژگیهای فیزیکی و شیمیایی الیاف استات سلولز ۱۰۷

رنگرزی الیاف استات ۱۱۰

فصل هشتم ۱۱۶

رنگزاهای مصنوعی مختلف مناسب الیاف طبیعی ۱۱۶

رنگزاهای اسیدی ۱۱۷

تئوری رنگرزی با رنگزاهای اسیدی ۱۱۷

تجمع رنگزا و فرایند رنگرزی ۱۲۰

جذب رنگزا ۱۲۱

مکانیزم رنگرزی ۱۲۲

روش‌های رنگرزی با رنگزاهای اسیدی ۱۲۵

رنگزاهای اسیدی میلینگ ۱۲۷

ویژگی‌ها ۱۲۹

یکنواخت شوندگی ۱۳۰

استفاده از مخلوط رنگزاهای اسیدی در رنگرزی ۱۳۲

کاربردهای وی‍‍ژه رنگزاهای اسیدی ۱۳۳

رنگرزی با رنگزاهای دندانه‌ای ۱۳۴

روش رنگ و دندانه توام

چکیده :

منظور از این تقسیم بندی پنج جلد کتابی است که توسط

The Society of Dyers and Colorists (SDC)

و

American Association of Textile Chemists and Colorists (AATCC)

تهیه گردیده است. در جلد اول، رنگینه های خانواده‌های اسیدی، آزوئیک و بازی (بازیک)، در جلد دوم رنگینه های خانواده‌های مستقیم، دیسپرس، سفید کننده های نوری، غذایی، اینگرین (Ingrain) و رنگینه‌های مناسب برای رنگرزی چرم و در جلد سوم رنگینه های خانواده های دندانه ای، طبیعی، رنگدانه (پیگمنت(، رآکتیو، احیاء کننده‌ها، رنگینه های هر خانواده به ترتیب زرد، نارنجی

رنگینه های محلول در حلال، گوگردی، خمی و خمی محلول به ترتیب آمده است. رنگینه های هر خانواده به ترتیب زرد، نارنجی، قرمز، بنفش، آبی، سبز، قهوه ای و بالاخره مشکی بوده و به رنگینه های (غیر مخلوط) موجود هر خانواده رنگینه ای شماره ای داده شده است. به عنوان مثال:

(نام ژنریک شاخص رنگی و یا کالرایندکس) C.I.Acid Yellow 1

که به معنای رنگینه اسیدی زرد رنگ با شاخص رنگی یک است. هر نام ژنریک شاخص رنگی، مشخص کننده یک ساختار شیمیایی معین می باشد. رنگینه های زرد رنگ دیگر همین خانواده با ساختار متفاوت، شاخص رنگی دیگری مثل 2، 3 ، 4 و غیره خواهد داشت. در این 3 جلد خصوصیات هر رنگینه با شاخص معین مثل پایه شیمیایی و شماره آن، تغییرات رنگ در مقابل نور روز و نور مصنوعی، روشن مناسب برای رنگرزی، قدرت یکنواختی (جابجایی)، لکه گذاری روی الیاف دیگر، تعدادی از ثباتهای مختلف، قابلیت برداشت و کاربردهای غیر نساجی آمده است. تقسیم بندی در این سه جلد با توجه به کاربرد رنگینه ها انجام شده است. در جلد چهارم فرمول شیمیایی رنگینه ها آمده است و به هر فرمول شیمیایی شماره ای داده شده است که آنرا شماره پایه شیمیایی شاخص رنگی نام داده اند. این شماره از 10000 شروع می گردد. به عنوان مثال رنگینه اسیدی زرد با شاخص رنگی 1، دارای شماره پایه شیمیاییی شاخص رنگی 10316 ، می باشد.

جلد پنجم از دو قسمت تشکیل شده است. در قسمت اول، رنگینه ها به ترتیب خانواده های رنگینه ای و رنگ در جلدهای اول، دوم و سوم و نام ژنریک آنها آمده و نامهای تجارتی آنها که توسط شرکتهای مختلف انتخاب شده است در مقابل آنها ذکر گردیده است. در قسمت دوم عکس قسمت اول عمل شده و نامهای تجارتی رنگینه ها به ترتیب حروف الفبا آمده و نام ژنریک آنها در مقابل قرار داده شده است. جلدهای دیگر کالرایندکس، ضمیمه بوده و رنگینه های جدید در آنها ذکر گردیده است.

مواد تعاونی (کمکی) در رنگرزی

مواد تعاونی و یا کمکی در رنگرزی را می توان به گروههای زیر تقسیم بندی نمود:

سختی گیر آب

تر کننده – نفوذ دهنده

ضد جابجایی

یکنواخت کننده

ریتارد (Retarder) یا ترمز کننده

کاریر (Carrier)

دیسپرس کننده

احیاء کننده

اکسید کننده

سختی گیر آب

آب در صنعت نساجی نقش مهمتری را نسبت به صنایع دیگر دارد. آبهای زمینی و دریا معمولاً دارای املاح کلسیم و منیزیم می باشد که به آب سخت معروف است. گرچه وجود مقداری از این املاح در آب آشامیدنی مفید است ولی در صنعت نساجی وجود اینگونه املاح در آب، در بیشتر موارد با مولکولهای رنگینه و یا مواد دیگر حاضر در حمام تولید رسوبهای نامحلول کرده و رنگرزی و تکمیل را با اشکال مواجه می سازد. در بیشتر کارخانجات، آب را جهت مصرف سالنهای تکمیل قبلاً تصفیه نموده و املاح را تا مقدار زیادی از آن جدا می نمایند. به هر حال چنانچه آب تصفیه نشده باشد و یا تصفیه آن بصورت کامل انجام نگرفته باشد می توان از مواد سختی گیر آب استفاده نمود. سختی گیرهای آب، مواد معدنی و یا آلی می باشد که با املاح کلسیم و منیزیم حاضر در آب سخت، تولید کمپلکس محلول نموده و بدین وسیله از واکنش آنها با مواد دیگر در حمام جلوگیری نموده و به عبارت دیگر آنها را غیرفعال می نماید. از آنجائی که در مقدمات، رنگرزی، چاپ و تکمیل، بیشتر مواد مصرفی نسبت به آب سخت حساسیت نشان می دهد لذا به کار گرفتن مواد سختی گیر آب با آب کاملاً تصفیه نشده ضرروی است.

مواد تر کننده (خیس کننده)

این مواد، تر شدن کالای نساجی را آسان تر و سریع تر می نماید و بکار گرفتن آنها برای کالایی که آب را به راحتی جذب نکند و مخصوصاً در عملیات پد (pad) که پارچه برای جذب محلول، مدت زیادی ندارد ضروری می باشد.

ترکننده به طور کلی کشش سطحی آب را روی لیف پایین آورده و آب بهتر روی سطح لیف و در منفذهای بین الیاف پخش می گردد و در نتیجه مواد همراه خود را به داخل کالا می رساند. این مواد نه تنها نفوذ محلول را به داخل کالا آسان تر می کند بلکه رنگرزی و تکمیل را یکنواخت تر می سازد. قابلیت جذب محلول متفاوت کالای نساجی در مراحل مختلف می تواند عامل نایکنواختی باشد. مثلاً چنانچه پارچه در مرحله مرسریزه به صورت یکنواخت خیس نشده باشد مرسریزه بصورت یکنواخت انجام نشده و این نایکنواختی، پس از رنگرزی خود را به صورت نایکنواختی رنگی نشان می دهد. ترکننده ها، دیسپرس کننده ها و شوینده ها (دترجنت ها) ساختمان شیمیایی مشابه ای داشته و یکی از این سه خاصیت ممکن است در بعضی موارد بیش از دو خاصیت دیگر باشد. برای عملیاتی که در قلیا و یا اسیدهای قوی صورت می گیرد بایستی از ترکننده های مقاوم در شرایط محیط استفاده گردد.

نفوذ دهنده که مشابه ترکننده می باشد به نفوذ بیشتر رنگدانه (رنگینه نامحلول در آب) به داخل کالا کمک می کند.

مواد ضد جابجایی (ضد مهاجرت)

مراحل خشک کردن پارچه، بعد از پد شدن آن (آغشته شدن با محلول و یا تعلیق رنگینه) در روشهای مداوم، از نقطه نظر یکنواختی بسیار مهم می باشد زیرا چنانچه حرارت روی پارچه از زیر آن و یا حرارت یک حاشیه از حاشیه دیگر بیشتر باشد آن قسمت زودتر خشک شده و در نتیجه مقداری محلول از قسمتی که هنوز خشک نشده است به طرف قسمت خشک شده حرکت کرده و در آن قسمت، رنگینه بیشتری انباشته می گردد. از این رو، داشتن درجه حرارت یکنواخت در پشت و روی پارچه و همچنین در عرض پارچه، شرط اساسی کسب رنگرزی یکنواخت می باشد. این حرکت رنگینه را جابجایی و یا مهاجرت گویند. برای به حداقل رساندن جابجایی بایستی از پیک آپ (Pick up) حدود 60 درصد و از دمای نه چندان زیاد در خشک کن (مثلاً 100 تا 110 درجه سانتگیراد) استفاده نمود. ازدیاد دو عامل مذکور (دما و پیک آپ) جابجایی بیشتر رنگینه را باعث می گردد. پیک آپ به صورت زیر تعریف می گردد.

 

جهت جلوگیری از جابجایی رنگینه در مرحله خشک کردن پارچه، می توان همچنین از مواد شیمیایی که به این منظور تهیه می شود استفاده نمود این مواد، ضد جابجایی نام دارند. مشتقات پلی آکریل اسید یک نوع از مواد ضد جابجایی می باشد که در رنگرزی مداوم با رنگینه های خمی و دیسپرس بکار گرفته می شود. مواد ضد جابجایی، بیشتر در گرمای خشک کن پلیمریزه شده و به این ترتیب یک سد فیزیکی در مقابل عبور و حرکت رنگینه از نقطه ای به نقطه دیگر به وجود می آید.

مواد یکنواخت کننده

از این مواد برای کسب رنگرزی یکنواخت و به عبارت دیگر جلوگیری از پخش نایکنواخت رنگینه در الیاف استفاده می شود. میل جذبی بسیار بالای بعضی از رنگینه ها به الیاف، باعث شتاب این مولکولها به طرف الیاف و در نتیجه رنگرزی نایکنواخت می گردد. کاربرد مواد یکنواخت کننده بیشتر در رنگرزی رمق کشی می باشد. یکنواخت کننده ممکن است با مکانیزمهای متفاوت به یکنواخت تر شدن رنگرزی کمک کند. گروه اول به این ترتیب از شتاب جذب رنگینه به الیاف می کاهد که خود، نقش یک مولکول رنگینه را بازی کرده و با میل جذبی بیشتری نسبت به رنگینه مکانهای رنگینه پذیر را اشتغال می نماید سپس در طی رنگرزی و شرایط مناسب ایجاد شده جای خود را به مولکولهای رنگینه می دهد و به این ترتیب از تجمع نایکنواخت مولکولهای رنگینه در یک نقطه (به علت میل جذبی بالا) جلوگیری می نماید.

این گروه یکنواخت کننده را الیاف دوست می نامند. گروه دیگر مواد یکنواخت کننده که به رنگینه دوست معروف است برخلاف گروه قبلی بار الکتریکی مخالف مولکولهای رنگینه را داشته و به این علت، در حمام رنگرزی به مولکولهای رنگینه جذب می گردد و در نتیجه میل جذبی رنگینه به الیاف کاهش می یابد. در طی رنگرزی و شرایط مناسب مولکولهای یکنواخت کننده به آرامی از مولکولهای رنگینه جدا شده و مولکولهای رنگینه میل جذبی خود را به الیاف باز می یابد و به الیاف جذب می گردد. یکنواخت کننده های رنگینه دوست ممکن است با مکانیزم دیگری عمل کند به این ترتیب که مولکول مرکب رنگینه و یکنواخت کننده قدرت جابجایی (مهاجرت) بیشتری را نسبت به مولکول تنهای رنگینه، بین لیف و حمام پیدا می کند و بالاخره مولکولهای یکنواخت کننده رنگینه دوست ممکن است با در هم شکستن تجمع چند مولکول رنگینه (آگلومر) و تبدیل آنها با تجمع های کوچک تر و در نتیجه آسان تر ساختن جابجا شدن آنها باعث یکنواخت تر شدن رنگرزی گردد.

یکنواخت کننده برای رنگرزی الیاف پلی آکریلونیتریل (آکریلیک) با رنگینه های کاتیونی، ریتارد نامیده می شود. هنگام رنگرزی آکریلیک در دمای بیش از 80 درجه سانتگیراد، میل جذبی رنگینه به لیف به حدی بالا می باشند که تمام مولکولهای رنگینه حاضر در حمام در فاصله زمانی کمی توسط الیاف جذب و تثبیت شده و رنگرزی نایکنواختی را باعث می گردد. جهت کسب یکنواختی در این رنگرزی از ریتاردر استفاده می شود. ریتاردر به معنای ترمزکننده و کند کننده می باشد. تعداد قابل توجهی از این مواد در حقیقت مولکولهای بی رنگی است که خواص آنها با مولکول رنگینه های کاتیونی تشابه زیادی دارد. ریتاردرها ممکن است که میل جذبی بالائی نسبت به الیافت آکریلیک داشته باشند ولی در عین حال به آسانی از لیف جدا گردیده و به حمام رنگرزی برگردند. در رنگرزی، این مولکولها سریع تر از مولکولهای رنگینه جذب الیاف گردیده و سپس به آرامی جای خود را به مولکولهای رنگینه می دهد. این نوع ریتاردر را موقت می نامند.

نوع دیگر ریتاردرها در مقایسه با مولکولهای رنگینه، میل جذبی و نیروی بین مولکول رنگینه و لیف مساوی دارد و به این ترتیب مولکولهای ریتاردر مثل مولکولهای رنگینه، خود جایی را اشغال کرده و از قرار گرفتن رنگینه در آن موضع جلوگیری می کند. این نوع ریتاردر را که مثل مولکولهای رنگینه برای همیشه در الیاف باقی می ماند دائم می نامند. لازم به تذکر است که دو نوع ریتاردر ذکر شده کاتیونی می باشند. ریتاردرهای آنیونی هم وجود دارد که با رنگینه های کاتیونی تشکیل کمپلکس داده و از میل جذبی آن می کاهند. در طی رنگرزی و در شرایط مناسب ریتاردر آنیونی، رنگینه کاتیونی را آزاد نموده و به این ترتیب جذب رنگینه توسط کالا امگان پذیر می گردد.

کاریر

از آنجائی که ساختار بلورین (کریستالین) الیاف پلی استر، در دمای جوش به رنگینه های دیسپرس اجازه ورود به خود را نمی دهد و در دمای جوش فقط عمقهای رنگی کم (روشن) حاصل می گردد، لذا برای کسب عمق رنگی زیاد (پر رنگ) در رنگرزی الیاف پلی استر با رنگینه های دیسپرس در دمای جوش از مواد کمکی به نام کاریر استفاده می شود. یکی از تئوریهای ارائه شده عملکرد کاریر را به صورت زیر توضیح می دهد:

کاربر باعث متورم شدن الیاف پلی استر و باز شدن ساختار آن گردیده و رنگینه دیسپرس موقعیت نفوذ به داخل الیاف پلی استر را پیدا می کند. بعد از اتمام رنگرزی و سرد شدن حمام، الیاف پلی استر دوباره ساختار بسته خود را باز یافته و مولکولهای رنگینه در آنها محبوس می گردد.

مواد نگهدارنده تعلیق (دیسپرس کننده)

منظور از تعلیق، مخلوط متجانس، (هموژن) ذرات نامحلول یک جسم جامد در یک مایع می باشد. به عنوان مثال رنگینه های خمی و یا دیسپرس در آب حل نگردیده و ته نشین می شود و در نتیجه انتقال آنها به صورت یکنواخت روی کالا غیر ممکن می گردد. جهت پخش یکنواخت این ذرات در آب از مواد کمکی به نام دیسپرس استفاده می شود که نقش آنها کمک به نگهداشتن تعلیق یکنواخت مواد و جلوگیری از شکست آن که به ته نشین شدن ذرات منجر می گردد، می باشد.

ساختمان مولکولی مواد نگهدارنده تعلیق، مثل سایر مواد سطح فعال از یک بخش آب دوست (هیدروفیل) و یک بخش چربی دوست (لیپوفیل) تشکیل می گردد. بخش چربی دوست مواد نگهدارنده تعلیق، ذره رنگینه به صورت آگلومر (تجمعی از چند مولکول رنگینه) را احاطه می نماید و بخش آب دوست آنها به طرف آب جهت می گیرد. به این ترتیب از نزدیک شدن ذرات رنگینه در آب و در نتیجه ته نشین شدن، جلوگیری بعمل می آید و تعلیق پایدار می شود.

احیاء کننده ها

احیاء کننده ماده ای است که هیدروژن به رنگینه و یا مواد شیمیایی دیگر اضافه می کند. به عنوان مثال رنگینه های خمی و انواعی از رنگینه های گوگردی که در آب نامحلول است توسط احیاء کننده احیاء گردیده و سپس به کمک قلیا در آب حل شده و توسط الیاف جذب می گردد.

سدیم دی تیونیت ، سدیم سولفید و سدیم بی سولفید نمونه هایی از مواد تعاونی احیاء کننده می باشد.

اکسید کننده ها

اکسید کننده ها برای اضافه کردن اکسیژن به رنگینه و یا مواد شیمیایی دیگر مورد استفاده قرار می گیرد. مثلاً رنگینه های خمی احیاء شده بعد از نفوذ به داخل الیاف سلولزی اکسید گردیده و به صورت نامحلول در آب در می آید و در نتیجه ثبات بالای خود را بدست می آورد. آب اکسیژنه، سدیم کرومات، سدیم بی کرومات، و پتاسیم پربورات نمونه هایی از مواد تعاونی اکسید کننده می باشد.

موضع رنگرزی در مراحل مختلف تولید

رنگرزی ممکن است در مراحل مختلف تولید انجام شود. موضع رنگرزی با توجه به فاکتورهای مختلف مثل کاربرد، هزینه و امکانات انتخاب می گردد.

رنگرزی توده (رنگرزی همزمان با تولید الیاف)

در تولید الیاف مصنوعی ممکن است رنگینه و یا رنگدانه را با پلیمر مذاب و یا محلول آن مخلوط نموده و سپس از منافذ رشته ساز بیرون فرستاد. در صورت انتخاب صحیح رنگینه، رنگ حاصل، از یکنواختی و ثبات برخوردار خواهد بود زیرا رنگینه بخشی جداناشدنی از لیف بوده و به آسانی تحت تأثیر شرایط محیط خارج از لیف قرار نخواهد گرفت.

رنگرزی همزمان با تولید امکان انتخاب رنگ کالا در مراحل بعد از تولید را غیر ممکن می سازد. به هر حال این روش برای رنگرزی الیافی که رنگرزی آنها بسیار مشکل باشد مهم است. به عنوان مثال بهترین روش رنگرزی الیاف پلی الفین مثل (پلی اتیلن و پلی پروپلین) رنگرزی همزمان با تولید می باشد که رنگرزی توده نام دارد. این رنگرزی به کمک مخلوط رنگینه و یا رنگدانه در یک بستر به نام ماستریچ (Master Batch) انجام می شود.

ب: رنگرزی الیاف باز

منظور از این روش، رنگرزی الیاف کوتاه قبل از بکار گرفته شدن در اولین مرحله تولیدی می باشد. در این روش با توجه به ظرفیت ماشین، الیاف در نقل کننده مخصوص قرار داده شده و در داخل ماشین رنگرزی قرار می گیرد. از آنجایی که پنبه و ویسکوز تورم زیادی در آب دارند. لذا برای رنگرزی این الیاف معمولاً لایه های الیاف به کمک صفحات مشبک از یکدیگر جدا می گردد. الیاف در ماشین ساکن بوده و محلول رنگینه توسط پمپ به صورت متناوب از داخل و خارج و از خارج به داخل بسته های الیاف جریان پیدا می کند. نایکنواختی رنگرزی محسوس نخواهد بود. در این روش که موثرترین و گران ترین روش رنگرزی می باشد رنگینه به خوبی در الیاف نفوذ می کند. به هر حال به علت از دست دادن مقداری از نرمی خود، ریسندگی الیاف رنگرزی شده مشکل تر از الیاف سفید می باشد و برای رفع این عیب باید روغن به الیاف اضافه گردد.

ج: رنگرزی فتیله

فتیله های ماشین کشش (گیل باکس) را هم می توان به شکل بسته های مخصوص و به کمک ماشین هائی که برای رنگرزی الیاف باز به کار گرفته می شود رنگرزی کرد. فتیله ها معمولاً روی قرقره های مشبک مخصوص پیچیده می شود. بسته ها در نقل کننده قرار گرفته و سپس داخل ماشین جای داده می شود. این روش، رنگرزی یکنواختی را امکان پذیر می سازد.

چ: رنگرزی نخ

دلیل اصلی رنگرزی نخ، تهیه نخ های رنگی جهت کسب طرحهای مختلف به کمک ماشین بافندگی می باشد. نخ را می توان به روشهای زیر رنگرزی نمود:

-I رنگرزی بویین نخ

نخ روی بویین های مشبک و یا فنری پیچیده شده و سپس بویین ها روی نقل کننده قرار گرفته و در داخل ماشین رنگرزی مشابه دو روش قبل رنگرزی می شود. جریان محلول رنگینه به صورت متناوب از داخل به خارج و از خارج به داخل بویین می باشد.

- II رنگرزی کلاف

از این روش می توان به جای رنگرزی نخ روی بویین استفاده نمود. از آنجائی که نخ به صورت کلاف کاملاً باز می شود نفوذ بسیار زیاد و آسان تری برای محلول رنگینه امکان پذیر می باشد. کلافها ابتدا روی میله های مخصوص و سپس در داخل حمام رنگرزی قرار می گیرد. در این روش رنگرزی، نخ نرمی و حجم خود را حفظ می کند.

-III رنگرزی چله

این روش مشابه روش رنگرزی نخ روی بویین می باشد. با این تفاوت که اقتصادی تر است. غلطک چله که در این روش مورد استفاده قرار می گیرد مشبک بوده و محلول رنگینه در آن پمپاژ می گردد.

د: رنگرزی پارچه

کالاهای یک رنگ، معمولاً به صورت پارچه می شوند، این روش انتخاب رنگ را تا آخرین مرحله ممکن می سازد. پارچه ای که از الیاف مختلف تشکیل می گردد با انتخاب رنگینه های مناسب برای اجزاء مختلف و توجه به شرایط آنها رنگرزی می شود و سعی می شود تا این الیاف رنگ یکسان داشته باشد. این نوع رنگرزی را Union dyeing می نامند. منظور از Piece dyeing رنگرزی کالائی است که فقط از یک نوع لیف تشکیل شده باشد.

و...

NikoFile


دانلود با لینک مستقیم


دانلود پایان نامه تاثیر آرایش کاشت و تراکم بوته بر عملکرد و شاخص های فیزیولوژیکی ماش

اختصاصی از فایلکو دانلود پایان نامه تاثیر آرایش کاشت و تراکم بوته بر عملکرد و شاخص های فیزیولوژیکی ماش دانلود با لینک مستقیم و پر سرعت .

دانلود پایان نامه تاثیر آرایش کاشت و تراکم بوته بر عملکرد و شاخص های فیزیولوژیکی ماش


دانلود پایان نامه تاثیر آرایش کاشت و تراکم بوته بر عملکرد و شاخص های فیزیولوژیکی ماش

تاثیر آرایش کاشت و تراکم بوته بر عملکرد و شاخص های فیزیولوژیکی ماش

 

 

 

 

 

 

لینک پرداخت و دانلود *پایین مطلب* 

فرمت فایل:Word(قابل ویرایش و آماده پرینت) + به همراه نسخه PDF

تعداد صفحه:121

جهت دریافت درجه کارشناسی ارشد (M.Sc.)

فهرست مطالب :

چکیده

فصل اول : کلیات

1-1- اهمیت و خواص حبوبات

1-1-1- تاریخچه پیدایش ماش

1-1-2- منشا و پراکندگی جغرافیایی ماش

1-1-3- خصوصیات مرفولوژیکی ماش

1-1-4- خصوصیات رشد

1-1-5- خصوصیات جوانه زنی

1-1-6- مشخصات اکولوژیکی زراعی ماش

1-1-6-1- تامین آب

1-1-6-2- نیاز کودی

1-2- تناوب زراعی

1-3- عملکرد

1-4- آفات و امراض

5-1- عملیات زراعی

1-6- داشت

1-7- برداشت

1-8- اهمیت و ارزش غذایی ماش

1-8-1- مصرف درمانی

فصل دوم : بررسی منابع

2-1- تاثیر تراکم و آرایش کاشت بر خصوصیات کمی و کیفی ماش

فصل سوم : مواد و روش ها

3-1- روش کار

3-2- مشخصات خاک محل

3-3- آماده سازی زمین و کاشت

3-4- عملیات داشت

3-5- عملیات برداشت :

3-6- یادداشت برداری ها و سنجش ها

3-6-1- صفات مرفولوژیکی و فنولوژیکی

3-6-2- اندازه‌گیری صفات فیزیولوژیکی

فصل چهارم : نتایج و بحث

4-1- ارتفاع بوته

4-2- تعدادغلاف در بوته

4-3- تعداد دانه در غلاف

4-4- وزن پوسته غلاف

4-5- وزن صد دانه

4-6- عملکرد دانه

4-7- عملکرد بیولوژیک

4-8- شاخص برداشت

4-9- شاخص سطح برگ

4-10- درصد پروتئین

4-11- سرعت رشد محصول

4-12- سرعت جذب خالص

4-13- سرعت رشد نسبی

4-14- نسبت سطح برگ

4-15- محاسبه ضرایب همبستگی

فصل پنجم : نتیجه گیری و پیشنهادات

فهرست منابع

چکیده انگلیسی

فهرست جداول :

جدول 3-1- خصوصیات شیمیایی خاک مزرعه محل اجرای طرح

جدول 4-1- تجزیه واریانس ارتفاع بوته

جدول4-2- تجزیه واریانس تعداد غلاف در بوته

جدول4-3- تجزیه واریانس تعداد دانه در غلاف

جدول4-4- تجزیه واریانس وزن پوسته غلاف

جدول 4-5- تجزیه واریانس وزن صد دانه

جدول 4-6- تجزیه واریانس عملکرد دانه

جدول 4-7- تجزیه واریانس عملکرد بیولوژیکی

جدول 4-8- تجزیه واریانس شاخص برداشت

جدول 4-9- تجزیه واریانس شاخص سطح برگ

جدول4-10- تجزیه واریانس درصد پروتئین

جدول 4-11- تجزیه واریانس سرعت رشد محصول

جدول 4-12- تجزیه واریانس سرعت جذب خالص

جدول 4-13- ضرایب همبستگی بین صفات مورد بررسی

جدول 4-14: مقایسه میانگین اثرات ساده آرایش کاشت و تراکم کاشت بر ارتفاع بوته ،تعداد غلاف در بوته ،تعداد دانه در غلاف،وزن پوسته،وزن صد دانه

جدول 4-15: مقایسه میانگین اثرات ساده آرایش کاشت و تراکم های مختلف کاشت بر عملکرد دانه ،عملکرد بیولوژیک ،شاخص برداشت و درصد پروتئین

جدول 4-16: مقایسه میانگین اثرات ساده آرایش کاشت و تراکم های مختلف کاشت بر شاخص سطح برگ ،سرعت رشد محصول ،سرعت جذب خالص

جدول 4-17- مقایسه میانگین اثر متقابل آرایش ها و تراکم های مختلف کاشت بر ارتفاع بوته، تعداد غلاف در بوته، تعداد دانه در غلاف، وزن پوسته، وزن صد دانه            

جدول 4-18- مقایسه میانگین اثر متقابل آرایش کاشت و تراکم های مختلف کاشت بر عملکرد دانه ،عملکرد بیولوژیک ،شاخص برداشت و درصد پروتئین

جدول 4-19- مقایسه میانگین اثر متقابل آرایش کاشت و تراکم های مختلف کاشت بر شاخص سطح برگ ،سرعت رشد محصول ،سرعت جذب خالص

چکیده :

جهت دستیابی به الگوی کاشت و تراکم مناسب ماش در منطقه ورامین پژوهشی در مزرعه ای واقع در روستای سعید آباد ورامین به صورت اسپیلت پلات در قالب طرح بلوک کامل تصادفی در 4 تکرار در سال زراعی 1388 اجرا شد. تیمار های آزمایش شامل4 سطح آرایش کاشت (کاشت یک ردیف روی پشته‌های 50 سانتی‌متری، کاشت دو ردیف در روی پشته‌های50 سانتی‌متری، کاشت یک ردیف روی پشته های 60 سانتی‌متری، کاشت دو ردیف روی پشته‌های 60 سانتی‌متری) در کرت های اصلی و 4 سطح تراکم (تراکم 166666 بوته در هکتار، تراکم 200000 بوته در هکتار، تراکم 333333 بوته در هکتار و تراکم 400000 بوته در هکتار) در کرت های فرعی بود. رقم مورد استفاده در این پژوهش، رقم اصلاح شده پرتو بود. نتایج نشان داد که بیشترین مقدار عملکرد دانه از تیمار آرایش کاشت چهارم و تراکم سوم با 3075 کیلوگرم در هکتار به دست آمد که نسبت به تیمار آرایش کاشت سوم و تراکم اول با میانگین 1291 کیلوگرم در هکتار، 58 درصد برتری نشان داد . بالاترین تعداد غلاف در بوته و دانه در غلاف و شاخص برداشت از تیمار آرایش کاشت سوم و تراکم اول به ترتیب با 03/32 عدد و 5/10عدد و 42/30 درصد به دست آمد. شاخص سطح برگ با 84/2 از تیمار آرایش کاشت دوم و تراکم چهارم بالاترین میزان و تیمار آرایش کاشت سوم و تراکم کاشت اول با 45/1 کمترین میزان را به خود تخصیص دادند. سرعت رشد محصول نیز تحت تاثیر هر دو عامل آزمایش قرار گرفت. بیشترین میزان از تیمار آرایش کاشت دوم و تراکم چهارم با 32/12 گرم بر متر مربع در روز در آغاز دانه دهی حاصل شد. بالاترین میزان سرعت جذب خالص از تیمار آرایش کاشت سوم و تراکم اول با 17/1 گرم بر متر مربع در روز در آغاز دانه دهی به دست آمد و کمترین مقدار نیز از تیمار آرایش کاشت دوم و تراکم دوم با 31/4 گرم بر متر مربع در روز در آغاز دانه دهی حاصل شد. در نهایت می توان بیان نمود که استفاده از آرایش کاشت دو ردیف بر روی پشته های 60 سانتی متری و تراکم 3/33 بوته در متر مربع برای دستیابی به حداکثر محصول ماش در منطقه، مناسب می باشد.

واژگان کلیدی : ماش، آرایش کاشت، تراکم بوته، عملکرد و اجزای آن، شاخص های رشد.

  • اهمیت و خواص حبوبات

حبوبات یکی ازمهم ترین منابع گیاهی غنی از پروتئین و دومین منبع مهم غذائی انسان به شمار می روند و نقش بسیار موثری در کنار غلات در تغذیه انسان داشته و در کشورهائی که از نظر کمی و کیفی در فقر غذائی هستند حبوبات اهمیت ویژه ای داشته و جزو اصلی رژیم غذائی مردم فقیر جهان محسوب می شوند.

میزان انرژی در حبوبات معادل غلات بوده و از نظر اسیدهای آمینه (به خصوص لایسین) غنی هستند. با توجه به داشتن ریشه های عمیق، لگوم ها، علاوه بر تحمل شرایط خشکی که جهت کشت در مناطق خشک توصیه می شود از توانایی تثبیت نیتروژن نیز برخوردار هستند که موجب بهبود حاصلخیزی خاک اعم از خواص فیزیکی، شیمیائی و زیستی شده و نقش مهمی را در پایداری نظام کشاورزی ایفا می کنند. به همین خاطر حبوبات در تناوب زراعی جایگاه خاصی داشته و دامنه سازگاری وسیعی دارند. درعرض های جغرافیائی و دامنه های حرارتی مختلف اعم از مناطق گرمسیری و سردسیری قابل کشت می باشند. این محصولات هم به طور منفرد و هم به صورت کشت مخلوط با سایر محصولات قابل کشت هستند.

رشد جمعیت و توسعه اقتصادی و اجتماعی کشور در دو دهه اخیر باعث شده تا مصرف مواد پروتئینی به خصوص گوشت قرمز افزایش چشمگیری یابد. بر این اساس افزایش تولید مواد پروتئینی به ویژه پروتئین های گیاهی که منابع ارزشمندتری در تغذیه هستند ، اجتناب ناپذیراست. ازطرفی حبوبات منبع مناسبی برای تغذیه احشام و حیوانات محسوب می شوند.

ماش، در کشورهای پر جمعیتی نظیر هندوستان با مصرف سرانه 7/11 کیلوگرم، سهم بیشتری در رژیم غذائی مردم نسبت به سایر کشورها دارند. در کشور ما مصرف سرانه ماش 8/4 کیلوگرم است. اگر چه مصرف آن از متوسط جهانی(1/6 کیلوگرم) پائین تر است ولی نقش مهمی در تغذیه افراد کم درآمد ایفا می کند. لذا افزایش تولید حبوبات به عنوان مکمل منابع پروتئینی در برنامه های توسعه اقتصادی کشور مورد توجه قرارگرفته است.

لگوم ها متعلق به تیره Fabaceae و زیر تیره Papilionoideae هستند. از نظر حجم تولید، غلات به دلیل تولید کربوهیدرات ها که بخش عمده رژیم غذایی انسان و دام را شامل میشوند، مهم ترین گیاهان هستند.از طرف دیگر بر اساس تعداد جنس و گونه مورد استفاده انسان، بقولات تا به حال پر مصرف ترین خانواده گیاهی هستند. لگوم ها جهت تولید مواد شیمیایی، مواد معطر، الوار سوخت، سر شاخه های علوفه ای ، علوفه، گیاهان پوششی،کود سبز، دانه و غذا استفاده می شوند.

حبوبات با داشتن پروتئینی در حدود 20 درصد و گاهی بیشتر نقش مهمی در تأمین پروتئین مورد نیاز انسان دارند. در کشورهایی که تولیدات دامی و محصولات کشاورزی آنها کم است، حبوبات در تغذیه‌ انسان می توانند یک مکمل غذایی و خوبی برای غلات محسوب شوند.

میزان پروتئین در غذاهای حیوانی معمولاً کمتر از میزان پروتئین در منابع گیاهی است ولی پروتئین‌های موجود در غذاهای حیوانی به علت داشتن تعداد اسید آمینه های بیشتر و مقدار بیشتر اسیدهای آمینه، با ارزش‌تر از پروتئین های گیاهی می‌باشند (مجنون حسینی، 1375).

با ترکیب پروتئین های گیاهی و حیوانی می‌توان کمبود اسیدهای آمینه را برطرف کرد. بنابراین در مواردی که پروتئین غلات و حبوبات با هم مصرف شوند توازن اسیدهای آمینه و مخلوط پروتئین از نظر کیفیت بهتر از حالتی است که هر کدام به تنهائی مصرف شوند (کوچکی، 1368).

همچنین این گیاهان به عنوان گیاهان جایگزین، با ارزش هستند اما در شیوه های زراعی و تحقیقات کشاورزی کمتر مورد توجه واقع شده اند (احمدی ،1387).

دانه های خشک و خوراکی لگوم ها را حبوبات[1] می گویند.

زراعت حبوبات سریع ترین راه افزایش تولید پروتئین در کشورهای در حال توسعه آسیا، آفریقا و آمریکای لاتین است. پتانسیل عملکرد حبوبات بالا و به 3000 – 2500 کیلوگرم در هکتار می رسد ولی بنا به دلایلی از جمله عوامل اکولوژیکی، فقدان فرصت و موقعیت برای تولید حبوبات، ضعف در تکنولوژی پس از برداشت کمبود تحقیقات بنیادی، محدودیت اجتماعی_ اقتصادی، فقدان مدیریت زراعی مناسب و عدم دسترسی کافی به بذور اصلاح شده و باکتری های ریزوبیوم، میزان عملکرد آنها در اکثر کشورها پایین است.

حبوبات در حاصلخیزی خاک مؤثر بوده و علاوه بر عدم نیاز چندان به نیتروژن، هر ساله مقادیری نیتروژن از طریق فرایند تثبیت، به خاک می‌افزایند. این گیاهان به دلیل کوتاهی فصل رشد و لطافت بقایای گیاهی بر جای گذاشته، گیاهان مناسبی برای قرار گرفتن قبل از محصولات پاییزه و پس از محصولات وجینی و دیررس هستند (باقری و همکاران، 1376).

شاخص برداشت پایین در این گیاهان باعث شده مواد تولید کمتری از بخش های رویشی به غلاف ها منتقل شوند. همچنین رشد نا محدود و ریزش گل ها و غلاف ها سبب کاهش عملکرد می گردد.

هنوز مشخص نشده که آیا ریزش گل و غلاف مربوط به محدودیت دسترسی به مواد غذایی، عدم تعادل هورمونی و یا اثر متقابل نور و دماست. در حقیقت تمامی این عوامل بایستی همزمان جهت برطرف کردن محدودیت تولید در حبوبات بررسی شوند (صادقی پور ،1380).

1-1-1- تاریخچه و پیدایش ماش

ماش با نام علمی (Vigna radiate L.) در انگلیس با نام Green gram، Mung bean و یا Golden gram خوانده می‌شود. نام علمی قدیمی آنRoxb. Phaseolus aureus بوده است (کوچکی، 1368). امروزه این امر مشخص است که ماش زراعی از راسته‌ نیامداران، تیره‌ بقولات، زیر‌تیره‌ پروانه آساها، قبیله‌ Phaseolus، جنس Vigna و گونه‌ Radiata می‌باشد. جنس Phaseolus که توسط لینه معرفی گردیده بود در آن زمان بسیار بزرگ و ناهمگن بود و شامل گونه‌هایی می‌گردید که خامه‌ پیچ خورده‌ یا انحنا دار داشته و این خصوصیت، آن را از جنس های Dolikhus و Vigna که دارای خامه‌ زاویه‌دار (کمتر یا بیشتر از90 درجه) می‌باشند تفکیک می نمود. گیاه شناسان بعدی این تصور را نادرست انگاشته و بعضی از گونه‌ها را به جنس های موجود دیگر و یا جنس های تازه شناسائی شده انتقال دادند. گام مهم در راه طبقه‌بندی طبیعی تر و واقعی مخلوط Phaseolus-Vigna توسط ویلزک[2] برداشته شد که ماش را به جنس Vigna منتقل کرد. بنا به تصور او جنس Vigna دارای دو مشخصه‌ برجسته است، اولاً گوشوارکها درست در زیر محل خروج برگ و یا شاخه‌ها قرار دارند، ثانیاً خامه‌ منقار مانند در طرف دیگر کلاله امتداد یافته است.

جنس Vigna شامل حدود 150 گونه بوده که در هفت زیر جنس به نام های Vigna، Ceratotropis، Lasiospron، Plectotropis، Sigmoidotropia، Haydonis و Macrorhynchus تقسیم می‌شوند (کوچکی، 1368).

اگر چه گیاهان واقع در گروههای مختلف متفاوت به نظر می‌آیند، ولی پیوستگی مشخصی بین گونه‌های این گروهها وجود دارد و آن بخاطر وجود فرمهای حد واسط می‌باشد.

زیر جنس سراتوتروپیس یک دسته‌ مشخص، همگن و یکنواخت با منشأ آسیایی است که تمام خصوصیات بارز و مشخصه‌ جنس ویگنا در آن به طرز مشهودی تظاهر یافته است (قوامی، 1376).

این خصوصیات مهم به قرار زیر می‌باشد:

1- گوشوارک ها درست در زیر محل خروج برگ و ساقه قرار دارند.

2- میان گره در روی محور گل آذین بسیار متراکم می‌باشد.

3- خامه در طرف دیگر کلاله امتداد یافته است.

4- دانه‌ گرده سه سوراخه بوده و دارای سطح مشبک و غده‌ای می‌باشد.

این زیر جنس شامل 16 یا 17 گونه بوده که عمدتاً آسیایی می‌باشند و از آنها شش گونه‌ Aconitifolia، Angularis، Mungo، Radiata، Trilobata و Umbellata در مناطق مختلف قاره‌ آسیا با گستردگی متفاوت کشت و کار می‌گردند. آنها توسط خصوصیات مختلفی نظیر تعداد و چگونگی فرورفتگی برگچه‌ها شکل گوشوارکها، نحوه‌ی جوانه‌زنی، کرکدار بودن یا بی کرک بودن گیاه و غلافهای آن و نهایتاً چگونگی چشم دانه از یکدیگر به راحتی قابل تمییز می باشند (قوامی، 1376). در این میان ماش معروف ترین گونه‌ زراعی است که به همراه ماش سیاه در مناطق زیادی از آسیا مورد کشت قرار می گیرد.

1-1-2- منشا و پراکندگی جغرافیایی ماش

منشا و پراکندگی برخی از گونه‌های زراعی چندان معلوم نیست، اما عموماً قضاوت ها و استنباط ها بر مبنای گونه‌های وحشی به عنوان جد احتمالی این گونه ها استوار است.

از این نظر Vigna sublobata و Vigna trilobata حایز اهمیت می باشد (قوامی، 1376).

اشکال وحشی ماش سبز در سطح وسیعی از مناطق گرمسیر جنوب، جنوب شرقی و شرق آسیا و شمال استرالیا پراکنده شده‌اند (مجنون حسینی، 1375).

این احتمال که Vigna sublobata جد نهایی هر دو گونه‌ Vigna radiata و Vigna mungo می‌باشد بسیار قوی بوده و توسط آزمایشات بسیاری از جمله بررسی الگوهای الکتروفورتیکی پروتئین دانه، چند شکلی طول قطعات برشی[3] و قطعات تکثیر یافته‌ تصادفی[4] مورد تأیید قرار گرفته است (قوامی، 1376).

این گونه بسیار شبیه به Vigna radiata بوده، به طوری که برخی از متخصصان رده‌بندی ترجیح می‌دهند آن را وارتیه‌ var. Sublobata Vigna radiata و نوع زراعی آن را Vigna radiata بنامند.

و...

NikoFile


دانلود با لینک مستقیم