فایلکو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

فایلکو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

توابع ورودی

اختصاصی از فایلکو توابع ورودی دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 24

 

توابع ورودی / خروجی در فایل

توابع در مطلب به دسته‌های متفاوت تقسیم می‌شوند. که از آن جمله می توان به توابع ریاضی. توابع گرافیکی، توابع برنامه نویسی و… اشاره نمود در بخشی از نرم افزار مطلب که به آن محیط پیشرفته (development Environment) می گویند. یک سری فرامین کاربردی و توابع قرار دارند کهI/o Functions نیز در این بخش واقع شده اند.

در اینجا به بررسی این توابع خواهیم پرداخت

باز کردن و بستن فایل opening and closing 1) File

Fclose

که وظیفه بستن یک فایل یا تعداد بیشتری فایل که باز می باشند را بر عهده دارد نحوه استفاده آن به شکل زیر است

Status = fclose (fid)

Status= fclose (all)

توضیحات:

fid)) status = fclose فایل مشخص شده را می‌بندد، در صورتیکه باز باشد اگر عمل بستن فایل موفقیت آمیز باشد0 و در غیر اینصورت 1- را بر می گرداند آرگومان fid نیز فایل مرتبط با فایلی که باز می‌باشد است.

Status=fclose(all) تمامی فایلهایی را که باز می‌باشند می‌بندد (به جز وردیها و خروجیها استاندارد و خطاها) در اینجا نیز در صورت موقعیت خروجی0 و در صورت عدم موفقیت خروجی 1- است.

Fopen یک فایل را باز می کند و یا اطلاعاتی را در مورد فایل که باز می‌باشد میدهد

نحوه استفاده آن بصورت زیر است:

fid = fopen (file name)

fid = fopen (file name , permission)

[fid , message] = fopen (filename, permission, machineformat)

fids = fopen (all)

[filename , permission, machineformat]= fopen (fid)

توضیحات:

fid = fopen (flenae) فایل filename را برای دسترسی به خواندن باز می کند (در PC ها، fopen فایلها را برای دستیابی خواندن دودویی باز می نماید.

Fid یک مقدار (اسکالر) صحیح (intiger) در مطلب است که مشخص کننده فایل نامیده می‌شود. از fid به عنوان اولین آرگومان در سایر فایلهای ورودی / خروجی بکار می‌رود. اگر fopen قادر به باز کردن فایل نباشد. مقدار 1- را بر می گرداند دو مشخص کننده فایل بطور اتوماتیک در دسترسی باشند. و نیازی به باز کردن آنها نیست که عبارتند از (خروجی استاندارد) fid = 1 و (خطای استاندارد) fid = 2

Fid = fopen (filename, permission) فایل (filename) رابا مجوزهای مشخص شده باز می‌کند . این مجوزها عبارتند از:

َ r َ

فایل را جهت خواندن باز می کند (پیش فرض)

َb َ

فایل را باز مکند و یا یک فایل جدید جهت نوشتن ایجاد می نماید (مقادیر را در صورت وجود نادیده می‌گیرد

َ a َ

فایل را باز یا یک فایل جدید جهت نوشتن ایجاد می کند و می‌توان داده‌ها را به انتهای فایل اضافه می نماید

ََ +r َ

فایل را هم برای خواندن و هم برای نوشتن باز می کند.

َ W َ

فایل را باز یا یک فایل جدید برای خواندن و نوشتن ایجاد می کند (از مقادیر هم در صورت وجود صرفه نظر می کند)

َ a+َ

فایل را باز یا یک فایل جدید برای خواندن و روشن ایجاد می کند و می توان داده‌ها را به انتهای فایل اضافه کرد

َ Aَ

اضافه کردن بدون فلاشنیگ اتوماتیک

َ Wَ

نوشتن بدون فلاشینگ اتوماتیک

َfile nameَ َ می‌تواند یک MATLABPATH یک جزء وابسته به pathname باشد اگر فایل فقط برای خواندن باز شده باشد. مسیر وابسته همیشه بر طبق دایرکتوری جاری search می‌شود. اگر پیدا نشد fopen یک search دیگری از MATLABPATH انجام می‌دهد.

فایلها ممکن است به دو صورت binary (پیش فرض) و text باز شوند. در مدل بانیری هیچ کاراکتری به طور جداگانه‌ عمل خاصی انجام نمی‌دهد. در فرم text کاراکتر که بدنبال کاراکتر دیگر در خط جدید آمده است در ورودی حذف شده و قبل از کارکتری که در خط جدید در خروجی قرار دارد اضافه می‌گردد.

برای باز کردن فایل به شکل Text از ًt ً در رشته مجوزها استفاده می‌شود مانند ًrt ً و ً wtt(توجه : در vnix ، binary text یکی هستند و ًt ًهیچ اثری ندارد اما در pc هامتفاوت است)

[fid , message] fopen (filename, permission) : فایل را به همان ترتیبی که گفته شد باز می کند، اگر نتوانست fid برابر -1 و massage شامل پیغامهای خطای وابسته سیستم خواهد بود. در صورتیکه fopen با موفقیت فایل را باز نماید، مقدار و ارزش massage خالی یا تهی خواهد بود.

[fid ,message]=fopen (filename permission,machineformat) : فایل مشخص شده را با مجوزهای داده شده باز می‌نماید و اعمالی را بر روی داده‌های خواندنی و نوشتنی با استفاده از fwrite,fread با استفاده از فرمت داده شده در machine format

انجام می‌دهد در اینجا به تعدادی از رشته‌های موجود درmachine format اشاره می‌نماییم:

Cray floating point with big – endian byte ordering

َ cray ََor َcَ

َ IEEE flating point with big endian byte orderingَ

َ ieee- beَ or َ bَ

َNumeric format of the machine on which matlab is runningَ

ََnativeَ or ََََ nَ

َ n َ یا َ negative َ که پیش فرض است یک فرمت عددی در ماشین می‌باشد که مطلب روی آن اجرا می شود


دانلود با لینک مستقیم


توابع ورودی

تحقیق درباره خلاصه پروژه بررسی میزان کاهش آلایندهای خروجی اگزوز دراثرسرویس و تنظیم موتور خودرو

اختصاصی از فایلکو تحقیق درباره خلاصه پروژه بررسی میزان کاهش آلایندهای خروجی اگزوز دراثرسرویس و تنظیم موتور خودرو دانلود با لینک مستقیم و پر سرعت .

تحقیق درباره خلاصه پروژه بررسی میزان کاهش آلایندهای خروجی اگزوز دراثرسرویس و تنظیم موتور خودرو


تحقیق درباره خلاصه پروژه بررسی میزان کاهش آلایندهای خروجی اگزوز دراثرسرویس و تنظیم موتور خودرو

فرمت فایل : WORD (لینک دانلود پایین صفحه) تعداد صفحات 48 صفحه

 

 

 

 

 

 

فهرست عناوین و مندرجات

1- مقدمه و سابقه

2- چکیده

3- آلودگی هوا و اثرات منفی آن بر محیط زیست

4- عوامل آلوده کننده هوا

5- آمار خودروهای تهران بزرگ و روش انتخاب

6- شرح دستگاه‌ها و روش‌های اندازه‌گیری

7- نتایج آزمایشات

8- بحث و نتیجه‌گیری

9- مراجع

 

مقدمه و سابقه

این گزارش مرتبط با بند (4- ج) مهندسی می‌باشد. هدف از تهیه این گزارش، مطالعه و تدوین اطلاعات جمع‌آوری شده در مورد پیشینة اجرای طرح‌های مشابه بوده؛ تا بتوان دیدی جامع نسبت به مراحل انجام پروژه‌های مشابه به‌دست آورده و در نهایت بتوان این پروژة در دست اجرا (BE1) را به صورت جامع و حتی کاملتر از موارد مشابه قبلی انجام داد. همچنین این مطالعه کمک می‌کند که از انجام کارهای تکراری (در صورت وجود ) خودداری شود.


دانلود با لینک مستقیم


تحقیق درباره خلاصه پروژه بررسی میزان کاهش آلایندهای خروجی اگزوز دراثرسرویس و تنظیم موتور خودرو

مقاله در مورد طراحی کنترل‌کننده بهینه فیدبک حالت و خروجی توان راکتیو

اختصاصی از فایلکو مقاله در مورد طراحی کنترل‌کننده بهینه فیدبک حالت و خروجی توان راکتیو دانلود با لینک مستقیم و پر سرعت .

مقاله در مورد طراحی کنترل‌کننده بهینه فیدبک حالت و خروجی توان راکتیو


مقاله در مورد طراحی کنترل‌کننده بهینه فیدبک حالت و خروجی توان راکتیو

لینک پرداخت و دانلود *پایین مطلب*

فرمت فایل:Word (قابل ویرایش و آماده پرینت)

 تعداد صفحه116

 

بخشی از فهرست مطالب

                    فهرست مطالب  

عنوان مطالب 

شماره صفحه

 

چکیده

1

فصل اول : پیشگفتار

2

1-1 مقدمه

3

1-2 انرژی باد

4

1-3 مزایای بهره برداری از انرژی باد

4

1-4 اهمیت کنترل توان راکتیو در نیروگاه بادی

5

1-5 پیکربندی پایان نامه

6

فصل دوم : مشخصه‌های سیستم‌های بادی

7

2-1 مقدمه

8

2-2- فن‌آوری توربین‌های بادی

9

 2-2-1- اجزای اصلی توربین بادی

11

 2-2-2- چگونگی تولید توان در سیستم‌های بادی

12

 2-2-3- منحنی پیش بینی توان توربین بادی

13

 2-2-4- پارامترهای مهم در توربین بادی

13

2-3- انواع توربین‌ها از لحاظ سیستم عملکرد

14

 2-3-1- عملکرد توربین‌های سرعت ثابت

14

  2-3-1-1- توربین‌های ممانعت قابل تنظیم سرعت ثابت

15

  2-3-1-2- توربین‌های ممانعت تنظیم شده دو سرعتی

15

  2-3-1-3- توربین‌های زاویة گام قابل تنظیم فعال سرعت ثابت

16

  2-3-1-4- توربین‌های زاویة گام قابل تنظیم غیر فعال

16

 2-3-2- الگوی عملکرد سرعت متغیر

16

  2-3-2-1- توربین‌های ممانعت تنظیم شده سرعت متغیر

17

  2-3-2-2- توربین‌های سرعت متغیر با زاویة گام قابل تنظیم فعال

17

  2-3-2-3- توربین‌های سرعت متغیر با محدوده عملکرد کوچک

18

2-4- کنترل توربین بادی

18

 2-4-1- فعالیت‌های قابل کنترل در توربین‌های بادی

19

 

 

فهرست مطالب

عنوان مطالب 

شماره صفحه

 

  2-4-1-1- کنترل گشتاور آیرودینامیکی

19

  2-4-1-2- کنترل گشتاور ژنراتور

20

  2-4-1-3- کنترل گشتاور ترمز

20

  2-4-1-4- کنترل جهت گیری دوران حول محور قائم

21

 2-4-2- کلیات عملکرد توربین‌های متصل به شبکه

21

2-5- ژنراتورهای مورد استفاده در توربین‌های بادی

22

 2-5-1- ژنراتورهای سنکرون

23

 2-5-2- ژنراتورهای جریان مستقیم

24

 2-5-3- ژنراتورهای القائی

25

 2-5-4- تحلیل عملکرد ژنراتور القائی

25

  2-5-4-1- راه‌اندازی توربین بادی با ژنراتور القائی

26

  2-5-4-2- تحلیل دینامیک ماشین القائی

27

  2-5-4-3- شرایط عملکرد خارج از محدوه طراحی

28

  2-5-4-4- مشخصه ژنراتور القایی دو سوتغذیه‌

28

خلاصه فصل 2

30

فصل سوم : مدلسازی ژنراتور القائی با تغذیه دو‌بل

31

3-1- مقدمه

32

3-2- عملکرد فوق سنکرون و زیر سنکرون ژنراتور القایی دو سو تغذیه

33

3-3- تبدیل قاب مرجع

35

 3-3-1- تبدیل قاب مرجع abc/dq

35

 3-3-2- تبدیل قاب مرجع abc به

39

3-4- مدل‌های ژنراتور القایی

39

 3-4-1- مدل بردار-فضا

40

 3-4-2- مدل قاب مرجع dq

43

3-5- مدل مرتبه 3 ژنراتور القایی  دو سو تغذیه

45

3-6- بیان پارامترها در سیستم پریونیت

45

فهرست مطالب

عنوان مطالب 

شماره صفحه

 

3-7- کنترل اینورتر متصل به شبکه

47

3-8- کنترل چرخش ولتاژ(VOC)

48

3-9- کنترل چرخش میدان(FOC)

51

خلاصه فصل 3

53

فصل چهارم : طراحی کنترل‌کننده بهینه فیدبک حالت و خروجی

54

4-1- مقدمه

55

4-2- مروری بر تحقیقات انجام شده در زمینه کنترل توان در DFIG

56

4-3- توصیف سیستم

58

4-4- مدل توربین بادی

59

4-5- مدل ژنراتور القایی دو سو تغذیه

60

4-6- مدل جعبه دنده

61

4-7- مدل فیلتر RL

62

4-8- فضای حالت سیستم

64

4-9- طراحی با جایدهی قطب

67

4-10- طراحی کنترل‌کننده برای مدل تقویت شده

71

4-11-شبیه سازی

73

4-12- طراحی کنترل‌کننده PI جهت کنترل سرعت روتور (wr)

83

خلاصه

86

فصل پنجم : نتیجه گیری و پیشنهادات

87

پیوست‌ها

91

منابع و مأخذ

92

فهرست منابع فارسی

93

فهرست منابع لاتین

95

چکیده انگلیسی

96

صفحه عنوان انگلیسی

97

اصالت نامه

98

فهرست شکل‌ها

عنوان 

شماره صفحه

 

شکل2-1- توربین‌های بادی مدرن واقع در مزرعه بادی

8

شکل2-2- انواع توربین‌های بادی

10

شکل 2-3- انواع توربین‌های بادی

11

شکل 2-4- دیاگرام سیستم بادی

12

شکل 2-5- منحنی توان بر حسب سرعت باد توربین بادی

13

شکل2-6- کلاس‌بندی ژنراتورهای الکتریکی که اغلب در توربین‌های بادی استفاده می‌شوند

23

شکل 2-7- منحنی توان، جریان و گشتاور ژنراتور القائی

26

شکل 2-8- منحنی افزایش جریان بر حسب کاهش فرکانس در ماشین القایی

28

شکل 2-9- دیاگرام بلوکی توان‌های جاری شده در ژنراتورهای القائی دو سو تغذیه

29

شکل 3-1- ساختار DFIG

32

شکل 3-2- مبدل پشت به پشت

32

شکل 3-3 الف : حالت فوق سنکرون

33

شکل 3-3 ب: حالت زیر سنکرون

34

شکل 3-4- مشخصه گشتاور – سرعت DFIG

34

شکل 3-5- بردار فضای x ومتغیرهای سه فازش xa,xb,xc

36

شکل 3-6- تبدیل متغیرها در قاب ساکن سه فاز(abc) به قاب دو فاز (dq)

37

شکل 3-7- تجزیه بردار فضای x به قاب مرجع گردان (dq)

38

شکل 3-8- دیاگرام ساده شده DFIG

40

شکل 3-9- مدار معادل بردار فضا ژنراتور القایی در قاب مرجع دلخواه

42

شکل 3-10- مدل ژنراتور القایی در قاب سنکرون

43

شکل 3-11- مدل ژنراتور القایی در قاب ساکن

43

شکل 3-12- اینورتر متصل به شبکه در سیستم مبدل بادی

47

شکل 3-13- دیاگرام فاز و PF

48

شکل 3-14- بلوک دیاگرام کنترل چرخش ولتاژ(VOC)

49

 

شکل 3-15- کنترل چرخش میدان شار روتور

52

شکل 4-1- منحنی مشخصه سرعت – توان توربین در زاویه گام صفر

59

شکل 4-2- سیستم کنترل حلقه باز

69

شکل 4-3- سیستم کنترل حلقه بسته

69

شکل 4-4- خطای حالت دائمی توان راکتیو سمت استاتور

70

شکل 4-5- خطای حالت دائمی توان راکتیو کانورترسمت شبکه (فیلتر RL)

71

شکل 4-6- پاسخ پله توان راکتیو سمت استاتور پیش از بهینه سازی

73

شکل 4-7- پاسخ پله توان راکتیو فیلتر RL پیش از بهینه سازی

74

شکل 4-8- پاسخ پله توان راکتیو سمت استاتور پس از بهینه‌سازی

74

شکل 4-9- پاسخ پله توان راکتیو فیلتر RL پس از بهینه سازی

75

شکل 4-10- نمودارسیگنال کنترل Vds پس از بهینه‌سازی

75

شکل 4-11- نمودارسیگنال کنترلVdg پس از بهینه‌سازی

76

شکل 4-12- نمودارسیگنال جریان مؤلفه d استاتور پس از بهینه‌سازی

77

شکل 4-13- نمودارسیگنال جریان مؤلفه d فیلتر RL پس از بهینه‌سازی

77

شکل 4-14- نمودارسیگنال جریان مؤلفه q فیلتر RL پس از بهینه‌سازی

78

شکل 4-15- نمودارسیگنال جریان مؤلفه q استاتور پس از بهینه‌سازی

78

شکل4-16- نمودارسیگنال جریان مؤلفه d روتور پس از بهینه‌سازی

79

شکل4-17- نمودارسیگنال جریان مؤلفه q روتور پس از بهینه‌سازی

79

شکل4-18- نمودارخطای حالت دائمی توان راکتیو استاتور

80

شکل4-19- نمودارخطای حالت دائمی توان راکتیو کانورتر سمت شبکه

80

شکل 4-20-  منحنی تغییرات سرعت روتور بر حسب پریونیت

81

شکل 4-21- پاسخ پله توان راکتیو سمت استاتور در سرعت روتور متغیر

82

شکل 4-22- پاسخ پله توان راکتیو فیلتر RL در سرعت روتور متغیر

82

شکل 2-23- نمودار بلوکی کنترل‌کننده PI

83

شکل4-24-  تعییرات سرعت روتور پس از طراحی کنترل‌کننده PI

83

شکل4-25- پاسخ پله توان راکتیو استاتور پس از طراحی کنترل‌کننده PI

84

شکل4-26-  پاسخ پله توان راکتیو فیلتر RL پس از طراحی کنترل‌کننده PI

84

شکل4-27-  سیگنال ولتاژ مؤلفه d استاتور پس از طراحی کنترل‌کننده PI

85

شکل4-28-  سیگنال ولتاژ مؤلفه d فیلتر RL پس از طراحی کنترل‌کننده PI

85

 

 


چکیده:

 

بالا بودن ضریب نفوذ باد در سیستم‌های الکتریکی متصل به شبکه، چالش‌های جدیدی را در رابطه با پایداری سیستم‌های قدرت به دنبال دارد. علیرغم ماهیت تصادفی باد، لازم است تا اطمینان به پایداری شبکه‌های قدرت تضمین شود. از آنجائیکه یکی از نیازهای جدید شرکت‌های تولیدکننده برق ازطریق انرژی باد، تنظیم ولتاژ می‌باشد، این پایان​نامه بر روی کنترل توان راکتیو در نیروگاه‌های بادی مجهز به ماشین‌های القایی دوسوتغذیه متمرکز شده است. در این پایان نامه یک نیروگاه بادی 9 مگاواتی شامل شش عدد توربین بادی 5/1 مگاواتی و ژنراتور القایی دو سو تغذیه ( بطوریکه همه توربین‌ها در یک راستا قرار گرفته و بادهای یکسانی را دریافت می‌کنند) مدلسازی شده است. در این مدل کانورترهای سمت روتور و شبکه با گین یک در نظر گرفته شده‌اند. برای کنترل توان راکتیو جاری شده در استاتور و فیلتر RL (این فیلتر کانورتر سمت شبکه را به شبکه متصل می‌کند) یک کنترل‌کننده فیدبک حالت و خروجی طراحی شده بطوریکه خروجی‌ها (توان‌های راکتیو جاری شده در استاتور و فیلتر RL)، ورودی‌های مرجع را دنبال کنند. بعد از طراحی کنترل‌کننده فیدبک حالت و خروجی، گین‌های این کنترل کننده با استفاده از روش نیوتن بهینه سازی شده‌اند. در این مدل در ابتدا سرعت روتور برابر با مقدار ثابتی در نظر گرفته شده، از آنجائیکه سرعت روتور در واقع مقدار ثابتی نیست و با تغییر سرعت باد ورودی به توربین، تغییر می‌کند و باعث نوسانی شدن توان‌های راکتیو می‌گردد، به همین جهت برای کنترل سرعت روتور نیز یک کنترل‌کننده PI طراحی شده است. نتایج شبیه‌سازی عملکرد صحیح سیستم پیشنهادی را نشان می‌دهد.

 

 


 

 

 

 

 

 

 

 

 

 

 

 

 

 

فصل اول

 

 

 

پیشگفتار

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1-1  مقدمه:

 

در طول بیست سال گذشته، به‌دلیل افزایش قیمت، محدود بودن منابع و اثرات مخرب زیست محیطی سوخت​های فسیلی، منابع انرژی تجدیدپذیر بسیار مورد توجه قرار گرفته‌‌اند. در همین حال، پیشرفت‌های فن‌آوری، کاهش قیمت و مشوق‌های دولتی باعث شده است تا پاره‌ایی از منابع انرژی تجدیدپذیر مقرون به صرفه و در بازار رقابت پذیر باشند. از این میان، انرژی باد یکی از سریعترین منابع انرژی تجدیدپذیری است که به سرعت در حال رشد و توسعه می‌باشد. انرژی باد سال‌های متمادی است که برای آسیاب کردن دانه‌های کشاورزی، پمپ کردن آب و دریا نوردی به‌کار برده شده است.

 

کاربرد آسیاب‌های بادی برای تولید برق به اواخر قرن نوزدهم برمی‌گردد؛ زمانیکه ژنراتور12 KW DC برای آسیاب‌های بادی ساخته شدند، اما این تنها در دهه 1980 میلادی است که صنعت به بلوغ کافی و لازم برای تولید برق به‌گونه‌ای اثر بخش و کارآمد دست می‌یابد.

 

در واقع ازسال 1975 پیشرفت‌های شگرفی در زمینه توربین‌های بادی در جهت تولید برق به‌عمل آمده است. در سال1980 اولین توربین برق بادی متصل به شبکه سراسری نصب گردید. بعد از مدت کوتاهی اولین مزرعه برق بادی چند مگاواتی در آمریکا نصب و به بهره برداری رسید. درپایان سال 1990 ظرفیت توربین‌های برق بادی متصل به شبکه در جهان به 200MW رسید که توانایی تولید سالانه 3200Gwh برق را داشته که تقریباً تمام این تولید مربوط به ایالات کالیفرنیا آمریکا و کشور دانمارک بود.[1]

 

امروزه کشورهای دیگر نظیر هلند، آلمان، بریتانیا، ایتالیا، اسپانیا، چین و هندوستان برنامه‌های ملی ویژه‌ایی را در جهت توسعه و عرضه تجاری انرژی باد آغاز کرده‌اند.

 

در طول دو دهه گذشته، مجموعه متنوعی از پیشرفت‌های تکنولوژی در صنایع تولید برق بادی بسط و توسعه یافته، بنحویکه نسبت تبدیل مؤثر تولید برق از باد و کاهش هزینه آن به صورت چشمگیری بهبود یافته است. توان توربین‌های بادی از چندین کیلووات به چندین و چند مگاوات در هر توربین افزایش یافته است. علاوه بر نصب توربین‌ها برروی خشکی، توربین‌های بادی بزرگتر به مناطق ساحلی دریاها رانده شده‌اند تا ضمن کاهش اثرات سوء آنها بر مناظر و مناطق خشکی، بتوانند انرژی بیشتری را جذب کنند.

 

 

 

 

 

 

 

1-2 انرژی باد:

 

هنگامی‌ که تابش خورشید به طور نامساوی به سطوح ناهموار زمین می‌رسد سبب ایجاد تغییرات در دما و فشار می‌گردد و در اثر این تغییرات باد به وجود می‌آید. همچنین اتمسفر کره زمین به دلیل حرکت وضعی زمین، گرما را از مناطق گرمسیری به مناطق قطبی انتقال می‌دهد که این امر نیز سبب به وجود آمدن باد می‌گردد. جریانات اقیانوسی نیز به طو مشابه عمل نموده و عامل 30٪ انتقال حرارت کلی در جهان می‌باشند. در مقیاس جهانی این جریانات اتمسفری به‌صورت یک عامل قوی جهت انتقال حرارت و گرما عمل می‌نمایند. دوران کره زمین نیز می‌تواند در برقراری الگوهای نیمه دائم جریانات سیاره‌ایی در اتمسفر، انرژی مضاعف ایجاد نماید. در حقیقت همان‌طور که عنوان شد باد یکی از صورت‌های مختلف انرژی خورشیدی می‌باشد که دارای یک الگوی جهانی پیوسته است.[2]

 

تغییرات سرعت باد، ساعتی، روزانه و فصلی بوده و متاثر از هوا و توپولوژی سطح زمین می‌باشد. بیشتر منابع انرژی باد در نواحی ساحلی و کوهستانی واقع شده‌اند.

 

 

 

1-3 مزایای بهره برداری از انرژی باد:

 

  • کاهش میزان مصرف سوخت‌های فسیلی
  • رایگان بودن انرژی باد
  • توانایی تأمین بخشی از تقاضای انرژی برق
  • کمتر بودن نسبی قیمت انرژی حاصل از باد نسبت به انرژی‌های فسیلی
  • کمتر بودن هزینه‌های جاری و هزینه‌های سرمایه گذاری انرژی باد در بلند مدت
  • عدم نیاز به آب
  • عدم نیاز به زمین زیاد برای نصب
  • کاهش آلودگی محیط زیست
  • افزایش قابلیت اطمینان در تولید انرژی برق

 

مشکلات عمده در نیروگاه‌های بادی عمدتاً شامل تغییرات در ولتاژ و فرکانس شبکه، عدم تعادل فازها و قطع شدن ناگهانی یک یا تمامی فازها و تغییرات شدید در سرعت باد است که باعث ناپایداری سیستم می‌شود.[3] در رابطه با  هر یک از این مشکلات تحقیقات و مطالعات متعددی صورت پذیرفته است. برای مثال در خصوص مشکلات مرتبط با ماهیت تصادفی باد می‌توان به تحقیق‌های [4و5] اشاره نمود که در این تحقیقات سیستم دینامیکی غیر خطی توربین بادی مدلسازی شده و یک کنترل کننده فیدبک بهینه تصادفی برای این سیستم طراحی شده است. در تحقیق [6] نیز به ارزیابی و مقایسه توربین‌های سرعت ثابت و متغیر جهت بهینه سازی دریافت انرژی بادی پرداخته شده است.

 

 

 

 

 

1-4 اهمیت کنترل توان راکتیو در نیروگاه‌های بادی

 

با افزایش استفاده از انرژی باد در شبکه‌های قدرت، تولید توان و پایداری شبکه موضوعاتی کلیدی در دهه اخیر شده است. وابستگی به شرایط واقعی باد همچنان یک فاکتور ریسکی در نگهداری سطح متوازنی میان عرضه انرژی و تقاضای آن به عنوان شرط اصلی برای عملکرد قابل اطمینان از سیستم توان الکتریکی است.[7]

 

بررسی به‌عمل آمده در آمریکا و کانادا در سال 2003 نشان داده که با کنترل توان راکتیو می‌توان از قطعی‌های متوالی خطوط انتقال و واحدهای تولیدی جلوگیری کرد. بنابراین بعضی از پیشنهادات پیرامون این موضوع  ارائه شده است[8].

 

شرکت‌های برق اروپایی راهبرد‌هایی را برای اتصال مزارع بادی به خطوط انتقال با سطح ولتاژ بالا ارائه کرده‌اند. این استانداردهای شبکه (کدهای شبکه[1]) الزامات مشابهی (نظیر پایداری شبکه در عملکرد عادی و تحت شرایط خطا)  که برای سیستم‌‌های تولیدی متداول بوده را، برای مبدل‌های توان بادی نیز وضع کرده‌اند. در مدت عملکرد نرمال، این استانداردها (پایداری شبکه در عملکرد عادی و تحت شرایط خطا) به معنای قابلیت تنظیم فرکانس، از طریق کنترل توان اکتیو و تنظیم ولتاژ از طریق کنترل توان راکتیو است.

 

یکی از انواع توربین‌های بادی سرعت متغیر، توربین‌های بادی با ژنراتورالقایی دو سو تغذیه (DFIG) می‌باشد که امروزه به عنوان یکی از رایج‌ترین و پرطرفدارترین توربین‌های بادی در جهان به‌حساب می‌آید. در این پایان نامه یک مزرعه بادی مجهز به این نوع توربین بادی به همراه سیستم کنترل توان راکتیو با استفاده از نرم افزار متلب ارئه شده است.

 

تا کنون روش‌های مختلفی برای کنترل توان توربین‌های بادی DFIG ارائه شده است که از جمله آن می‌توان به تولید توان اکتیو تحت شرایط نامتعادل [10]، کنترل جداگانه گشتاور الکترومغناطیسی و توان راکتیو برای ژنراتورهای دو سو تغذیه[2] (DFIG)[11]، کنترل توان با استفاده از ازکانورتر منبع جریان [12] و کاربرد کانورتر سمت شبکه به صورت یک فیلتر اکتیو موازی برای تولید توان راکتیو و جبران هارمونیک و استفاده از اینورتر سمت روتور (RSI) تنها برای تولید توان اکتیو [13] ارائه شده است.

 


[1] Grid Cods

[2] Doubly Fed Induction Generator

 


دانلود با لینک مستقیم


مقاله در مورد طراحی کنترل‌کننده بهینه فیدبک حالت و خروجی توان راکتیو

دانلود مقاله خلاصه پروژه بررسی میزان کاهش آلایندهای خروجی اگزوز دراثرسرویس و تنظیم موتور خودرو

اختصاصی از فایلکو دانلود مقاله خلاصه پروژه بررسی میزان کاهش آلایندهای خروجی اگزوز دراثرسرویس و تنظیم موتور خودرو دانلود با لینک مستقیم و پر سرعت .

دانلود مقاله خلاصه پروژه بررسی میزان کاهش آلایندهای خروجی اگزوز دراثرسرویس و تنظیم موتور خودرو


دانلود مقاله خلاصه پروژه بررسی میزان کاهش آلایندهای خروجی اگزوز دراثرسرویس و تنظیم موتور خودرو

این گزارش مرتبط با بند (4- ج) مهندسی می‌باشد. هدف از تهیه این گزارش، مطالعه و تدوین اطلاعات جمع‌آوری شده در مورد پیشینة اجرای طرح‌های مشابه بوده؛ تا بتوان دیدی جامع نسبت به مراحل انجام پروژه‌های مشابه به‌دست آورده و در نهایت بتوان این پروژة در دست اجرا (BE1) را به صورت جامع و حتی کاملتر از موارد مشابه قبلی انجام داد. همچنین این مطالعه کمک می‌کند که از انجام کارهای تکراری (در صورت وجود ) خودداری شود.

گزارش بررسی میزان کاهش آلاینده‌های خروجی اگزوز در اثر سرویس و تنظیم موتور خودرو شامل دو قسمت عمده می‌باشد. قسمت اول توسط شرکت کنترل ترافیک تهران به تشریح متد انتخاب خودروهایی که آزمایشات برروی آن‌ها انجام می‌شود پرداخته و نتایج حاصل از بررسی وضعیت سلامت فنی خودروهای بنزینی را مورد تحلیل قرار می‌دهد. قسمت دوم ارائة نتایج حاصل از آزمایشات انجام شده در پژوهشگاه صنعت نفت برروی خودروهای انتخابی و تحلیل آن‌ها می‌باشد.

درقسمت اول، یعنی متد انتخاب خودروهایی که آزمایشات برروی آن‌ها صورت گرفته، ابتدا خودروهایی که تعداد آن‌ها بسیار کم است از سیستم حذف گردیده‌اند. سپس جامعه مورد بررسی را به9 نوع اتومبیل (2 نوع ایرانی و 7 نوع خارجی) طبقه‌بندی کرده‌اند. این 9 نوع عبارتند از پیکان، رنو، پژو، تویوتا، شورلت، نیسان، ب.ام.و ، مزدا و جیپ . این خودروها در سه دهه 40-49 ، 50-59 ، 60-69 و70-71 مد نظر قرارگرفته‌اند چون از نظر فراوانی تجمعی، دارای اکثریت مطلق از نظر تعداد می‌باشند. در نهایت این جامعه به 17 زیرمجموعه تقسیم شده‌است که 7 نمونه از آن‌ها مربوط به پیکان و رنو و 9 نمونه دیگر مربوط به دیگر خودروهای موجود در سیستم می‌باشد. در ادامه، مطابق جدول زیر حجم هر طبقه از جامعه را به صورت زیر قرار داده‌اند.

پس از مشخص کردن حجم هر نمونه در یک نمونه‌گیری مقدماتی ( pre sampling )، تعدادی خودرو از هر نمونه انتخاب شده‌اند. ضمناً در نمونه‌های انتخاب شده پارامترهای روغن سوزنی، وضعیت شمع ، وضعیت پلاتین، وضعیت فیلتر، وضعیت تعمیر خودرو و تنظیم موتور بررسی شده‌اند. در ادامه حجم نمونه از هر طبقه (ni) از روش انتساب نیمن تعیین گردیده است.                                

که در این رابطه :

(ni) حجم نمونه طبقه iام،

(Pi) نسبت تعداد طبقه iام به تعداد کل جامعه،

(Si) انحراف معیار طبقه iام و(n) تعداد نمونه در کل جامعه می‌باشد.

برای استفاده از این رابطه باید si های زیر جامعه‌ها مشخص باشند که برآورد آن‌ها با استفاده از تحلیل نمونه مقدماتی بدست آمده است.

نتایج نمونه‌گیری نهایی در جدول زیر آورده شده است.

در قسمت بعد مجدداً شاخص‌های بهینگی که قبلاً به آن‌ها اشاره شد، مورد بررسی قرار گرفته و به هر کدام از آن‌ها امتیازی داده‌اند که طبق آن‌‌ها امتیاز خودرویی که بهینگی کامل دارد 100 و خودرویی که نقص کامل دارد 7 می‌باشد.

برای انجام قسمت دوم که تست خودروها و انجام آزمایشات برروی آن‌ها می‌باشد، ابتدا ابزار آزمایشات با آنها انجام شده‌اند معرفی شده‌اند. این ابزار عبارتند از شاسی دینامومتر، دستگاه نمونه‌گیر گازهای اگزوز، دستگاه آنالیز گازهای اگزوز شامل دستگاه آنالیز منوکسیدکربن، دستگاه آنالیز دی‌اکسیدکربن، دستگاه آنالیز هیدروکربن‌ها، دستگاه آنالیز اکسیدهای ازت و دستگاه آنالیز اکسیژن.

سپس انواع سیکلهای رانندگی را معرفی کرده و یکی از آن‌ها را انتخاب کرده‌ و تست را با آن سیکل انجام داده‌اند.

لازم به یادآوری است که در این گزارش از روش تست و اندازه‌گیری آلاینده‌های مختلف صحبتی نشده است؛ و فقط در جداولی جداگانه مقادیر آلاینده‌ها و میزان مصرف سوخت، قبل و بعد از تنظیم داده شده‌اند.

در پایان در یک نتیجه‌گیری، اثر تنظیم موتور را برروی آلاینده‌ها آورده‌اند که به عنوان مثال گفته شده است که تنظیم موتور می‌تواند CO را از gr/km 64 به gr/km 32و HC را از gr/km 1/5 به gr/km 7/2 برساند. همچنین در بخش نتیجه‌گیری در جدولی نشان داده شده است که تنظیم موتور اثر مطلوب‌تری بر روی خودروهای رده سنی پائین‌تر دارد.

3- آلودگی هوا و اثرات منفی آن بر محیط زیست

مسأله آلودگی محیط زیست که با پیشرفت تمدن، گریبان‌گیر جوامع بشری شده با عوامل رشد تمدن صنعتی در ارتباط است. مواد آلاینده‌ای که در شهر‌ها توسط منابع صنعتی ایجاد می‌شود، نه‌تنها به سلامت و موجودیت این شهرها لطمه وارد می سازد، بلکه آن‌چه هم اکنون به‌عنوان یک خطر جدی تلقی می‌شود، این است که در اثر توزیع این مواد در جو زمین، وضع کلی جو تحت تأثیر قرار گرفته و ترکیبات آن تغییر کرده که این تغییرات مسلماً به ضرر جامعه انسانی تمام می‌شود.

منابع آلوده کننده در ایران به چهار گروه وسایل نقلیه موتوری، صنایع، کارخانجات، منابع گرمایشی خانگی و تجاری و منابع متفرقه نظیر سوزاندن زباله و غیره تقسیم می‌شود. مطابق آمارهای سازمان حفاظت محیط زیست، 97 درصد غلظت گاز سمی منوکسیدکربن در تهران مربوط به وسایل نقلیه موتوری است؛ و غلظت این گاز در مناطق پر ترافیک در محل رانندگان تا ppm 120 و در منازل داخل شهر نزدیک ppm10 می‌باشد. حال آن‌که استاندارد هوای پاک فقط ppm9 منوکسیدکربن را مجاز دانسته است.

طبق گزارشات این سازمان 70-60 در صد کل آلودگی هوای تهران ناشی از وسایل نقلیه موتوری        می‌باشد. استفاده نابجا از اتومبیل، تنظیم نبودن موتورها، رفت و آمدهای غیر ضـروری و ایجاد ترافیـک سنگین، فضای بسیار آلوده کننده‌ای را برای محیط زیست مردم فراهم آورده است.

 شامل 47 صفحه فایل word قابل ویرایش


دانلود با لینک مستقیم


دانلود مقاله خلاصه پروژه بررسی میزان کاهش آلایندهای خروجی اگزوز دراثرسرویس و تنظیم موتور خودرو