فایلکو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

فایلکو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

نقش توان راکتیو در شبکه های انتقال و فوق توزیع

اختصاصی از فایلکو نقش توان راکتیو در شبکه های انتقال و فوق توزیع دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 104

 

موضوع :

نقش توان راکتیو در شبکه های انتقال و فوق توزیع

چکیده:

در این پروژه در مورد نقش توان راکتیو در شبکه های انتقال و فوق توزیع بحث شده است و شامل 5 فصل می باشد که در فصل اول در مورد جبران بار و بارهایی که به جبران سازی نیاز دارند و اهداف جبران بار و جبران کننده های اکتیو و پاسیو و از انواع اصلی جبران کننده ها و جبران کننده های استاتیک بحث شده است و در فصل دوم در مورد وسایل تولید قدرت راکتیو بحث گردیده و درمورد خازنها و ساختمان آنها و آزمایش های انجام شده روی آنها بحث گردیده است و در فصل سوم در مورد خازنهای سری و کاربرد آنها در مدارهای فوق توزیع و ظرفیت نامی آنها اشاره شده است و در فصل چهارم در مورد جبران کننده های دوار شامل ژنراتورها و کندانسورها و موتورهای سنکرون صحبت شده است و در فصل پنجم ترجمه متن انگلیسی که از سایتهای اینترنتی در مورد خازنهای سری می باشد که در مورد UPFC می باشد.

فصل اول:

جبران بار

مقدمه

توان راکتیو یکی از مهمترین عواملی است که در طراحی و بهره برداری از سیستم های قدرت AC منظور می گردد علاوه بر بارها اغلب عناصر یک شبکه مصرف کننده توان راکتیو هستند بنابراین باید توان راکتیو در بعضی نقاط سیستم تولید و سپس به محل‌های موردنیاز منتقل شود.

در فرمول شماره (1-1) ملاحظه می گردد

قدرت راکتیو انتقالی یک خط انتقال به اختلاف ولتاژ ابتدا و انتها خط بستگی دارد همچنین با افزایش دامنه ولتاژ شین ابتدائی قدرت راکتیو جدا شده از شین افزایش می‌یابد و در فرمول شماره (2-1) مشاهده می گردد که قدرت راکتیو تولید شده توسط ژنراتور به تحریک آن بستگی داشته و با تغییر نیروی محرکه ژنراتور می توان میزان قدرت راکتیو تولیدی و یا مصرفی آن را تنظیم نمود در یک سیستم به هم پیوسته نیز با انجام پخش بار در وضعیت های مختلف می‌توان دید که تزریق قدرت راکتیو با یک شین ولتاژ همه شین ها را بالا می برد و بیش از همه روی ولتاژ همه شین تأثیر می گذارد. لیکن تأثیر زیادی بر زاویه ولتاژ شین ها و فرکانس سیستم ندارد بنابراین قدرت راکتیو و ولتاژ در یک کانال کنترل می شود که آنرا کانال QV قدرت راکتیو- ولتاژ یا مگادار- ولتاژ می گویند در عمل تمام تجهیزات یک سیستم قدرت برای ولتاژ مشخص ولتاژ نامی طراحی می شوند اگر ولتاژ از مقدار نامی خود منحرف شود ممکن است باعث صدمه رساندن به تجهیزات سیستم یا کاهش عمر آنها گردد برای مثال گشتاور یک موتور القایئ یک موتور با توان دوم و ولتاژ ترمینالهای آن متناسب است و یا شارنوری که لامپ مستقیماً با ولتاژ آن تغییر می نماید بنابراین تثبیت ولتاژ نقاط سیستم از لحاظ اقتصادی عملی نمی باشد از طرف دیگر کنترل ولتاژ در حد کنترل فرکانس ضرورت نداشته و در بسیاری از سیستم ها خطای ولتاژ در محدوده 5% تنظیم می شود. توان راکتیو مصرفی بارها در ساعات مختلف در حال تغییر است لذا ولتاژ و توان راکتیو باید دائماً کنترل شوند در ساعات پربار بارها قدرت راکتیو بیشتری مصرف می کنند و نیاز به تولید قدرت راکتیو زیادی در شبکه می باشد اگر قدرت راکتیو موردنیاز تأمین نشود اجباراً ولتاژ نقاط مختلف کاهش


دانلود با لینک مستقیم


نقش توان راکتیو در شبکه های انتقال و فوق توزیع

تحقیق درباره طراحی و ساخت جبران کننده ایستای توان راکتیو منبع

اختصاصی از فایلکو تحقیق درباره طراحی و ساخت جبران کننده ایستای توان راکتیو منبع دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 15

 

طراحی و ساخت جبران کننده ایستای توان راکتیو منبع

ولتاژی برای جبران بار

محمد مهدی منصوری

صندوق پستی:3173-89195

کلمات کلیدی: جبران کننده ایستای توان راکتیو، SVC ، STATCOM، اینورتر چند سطحی.

چکیده

هدف، طراحی و ساخت یک جبران کننده ایستای توان راکتیو از نوع منبع ولتاژی و بصورت چند سطحی بوده‌است، یک اینورتر سه سطحی از نوع اینورترهای متوالی با توان نامی +3KVAR طراحی و ساخته شده‌است، و یک روش کنترلی بر اساس کنترل اختلاف فاز با استفاده از مدولاسیون برنامه‌ریزی و بهینه شده اجرا شده‌است.

مدارات پروژه شامل برد راه‌انداز کلیدهای الکترونیک قدرت، بردهای اندازه‌گیری ولتاژ و جریانهای فیدبک، برد پردازشگر اصلی، برد حفاظت از خازنها بوده‌است.

1-    مقدمه

از پیشرفته‌ترین کنترل کننده‌های توان راکتیو که در دو دهة اخیر به مدد پیشرفت ساخت ادوات نیمه‌هادیهای قدرت با توان بالا ارائه شده‌اند جبران کننده‌های ایستای توان راکتیو ( SVC ) می‌باشند. این جبران کننده‌ها در مقایسه با جبران کننده‌های دیگر مزایایی مانند قابلیت انعطاف بیشتر و سرعت پاسخ بالاتر دارند، یکی از آخرین انواع SVC نوع اینورتری آن معروف به STATCOM می‌باشد که نسبت به انواع قبلی مزایایی مانند استفاده از حداقل عناصر ذخیره کننده انرژی، فضای کمتر مورد نیاز و سرعت پاسخ بالاتر دارد، در این جبران کننده‌ها از مبدلهای DC/AC استفاده می‌شود که در حالت کلی می‌توانند چند سطحی باشند. اینورترهای چند سطحی نسبت به اینورترهای متداول قابلیت کار در توانها و ولتاژهای بالاتری دارند و همچنین در فرکانس کلیدزنی مشابه میزات آلودگی کمتری به لحاظ هارمونیکی ایجاد می‌کنند.

از آنجا که برای نمونه آزمایشگاهی طراحی، ساخت و تست یک سیستم تک فاز راحتتر است، جبران کننده مورد نظر بصورت تکفاز در نظر گرفته شد ولی در طراحی همواره سعی شد تا ملاحظاتی در نظر گرفته شود که سیستم قابل گسترش به سه‌فاز هم باشد و یا اینکه بتوان برای هر فاز یک جبران کننده مستقل در نظر گرفت.طراحی براساس دو اینورتر متوالی انجام شده که یک اینورتر پنج سطحی تکفاز را تشکیل می‌دهد.

در طراحی سعی شده که همه متغیرهای لازم بصورت نرم‌افزاری وجود داشته باشند تا انواع روشهای مدولاسیون و کنترل قابل پیاده سازی باشند و در انتها دو روش مدولاسیون و کنترل اجرا شده‌است.

2- تقسیم بندی

یک جبرانساز ایستای سنکرون با کنترل میکروپروسسوری را می‌توان بصورت شکل 1) تقسیم بندی نمود. هدف از تقسیم بندی مستقل سازی وظایف هر یک از بخشها و ریز کردن پروژه به بخشهای کوچکتر است. در اینجا به توصیف مختصری از شرح وظایف هر یک از این بخشها می‌پردازیم.

شکل1) بلوک دیاگرام جبران کننده طراحی شده

2-1- حفاظت ورودی

وظیفه این بخش حفاظت کل سیستم شامل جبران کننده و بار در مقابل خطاهای اضافه ولتاژ یا اضافه جریان است. از آنجا که این سیستم در حال تست بوده و به دفعات زیاد آزمایش می‌شود در مقابل وقوع خطا مستعد بوده و حفاظت در مقابل انواع خطاها از جمله اضافه ولتاژ و اضافه جریان بعلت خطاهای سیستم و ناپایداری آن لازم به نظر می‌رسد. این قسمت شامل چهار نوع حفاظت زیر می‌باشد.

-          حفاظت اضافه جریان کم و بلند مدت

-          حفاظت اضافه جریان زیاد و لحظه‌ای

-          حفاظت اضافه ولتاژ کم و بلند مدت

-          حفاظت اضافه ولتاژ زیاد و لحظه‌ای

2-2- فیلتر ورودی

وظیفه این بخش فیلترکردن جریان کل سیستم شامل جبران کننده و بار است تادرحد ممکن درشبکه برق شهری هارمونیکهای کمتری تزریق گردد، وجود این بخش از آن جهت لازم به نظر می‌رسید که بدلیل موقعیتهای مختلف و زیاد در تست، تأثیر کارکرد سیستم بر شبکه بخصوص مصرف کننده‌های نزدیک را کاهش دهیم، این بخش از یک فیلتر LC تشکیل شده است.

 

شکل 2) فیلتر ورودی

2-3- بخش ترانسهای جریان و ولتاژ

این بخش از دو عدد ترانسفورماتور جریان و ولتاژ تشکیل شده است تا از جریان و ولتاژ مجموعه بار و جبران کننده اندازه گیری نمایند. ترانسفورماتور ولتاژ جهت تهیه سیگنالی متناسب و ایزوله از ولتاژ ورودی استفاده می‌شود، نسبت تغییرات ولتاژ صفر تا 250 ولت اولیه به صفر تا 10 ولت ثانویه می‌باشد.

ترانسفورماتور جریان جهت تهیه سیگنالی متناسب و ایزوله از مجموع جریان بار و جبران کننده استفاده می‌شود. نسبت تغییرات صفر تا 100 آمپرجریان اولیه به تغییرات صفر تا 250 میلی آمپر ثانویه است. این ترانسفورماتور در حالتهای خطا و گذرا نباید به اشباع یا ناحیه غیر خطی نزدیک گردد و به این منظور دامنه کارکرد آن بزرگتر در نظر گرفته شده‌است.

2-4- بخش اتصال بار

این بخش جهت اتصال بار امکاناتی را فراهم می‌نماید و بطور ساده می‌تواند فقط شامل ترمینالهایی باشد، این بخش به این علت در نظر گرفته شده است تا موقعیت اتصال بار به سیستم مشخص باشد. در این بخش امکانات دیگری نظیر کلید، فیوز و محافظتهای دیگر می‌توان در نظر گرفت.

2-5- بخش راکتانس

این بخش شامل یک سلف است که راکتانس اصلی جبران کننده ایستای توان راکتیو به منظور فیلتر سازی ولتاژ خروجی اینورتر می‌باشد. مقدار سلف از رابطه اصلی جبران کننده توان راکتیو و مشخصات مورد نیاز بدست آمده است و به صورت زیر طراحی شده است:

(1)

که α زاویه آتش پالسهای اینورتر است ،اگر Vs برابر 220 ولت باشد و توان راکتیو +3KVAR تا –3KVAR بخواهیم داشته باشیم آنگاه :

(2) L=10mH

(3)                                         IMAX=14A

2-6- کلیدهای اصلی

این بخش شامل کلیدهای اصلی اینورتر از نوع IGBT می‌باشد که به صورت آرایش تمام پل و تک فاز بسته شده‌اند. همچنین مدارهای اسنابری، دیودهای موازی- معکوس، خازنهای طرف DC در این بخش هستند.

آرایش این بخش بصورت دو اینورتر متوالی تک فاز تمام پل است که یک اینورتر تک فاز پنج سطحی را تشکیل می‌دهند. کلیدها از نوع IGBT همراه با دیودهای موازی- معکوس هستند که با توجه به نیازهای طراحی و المان بصرفه موجود در بازار ایران، المان SKM75GD123 از محصولات شرکت SEMIKRON انتخاب شده است.

مدار اسنابر : با توجه به پیشنهاد سازندة کلیدها و اینکه از نوع IGBT هستند، یک مدار اسنابر خازنی ساده برای کلیدها کفایت می‌کند، که با توجه به این پیشنهاد از خازنهای از نوع MKP با سلف بسیار کم در نزدیکترین نقطه به کلیدها با اندازه 100nF تا 200nF استفاده شده است.

مدار محافظت اتصال کوتاه: این بخش شامل یک فیوز و یک مدار تشخیص اضافه جریان است که در صورت عبور جریان بیش از حد از خازن با اصال کوتاه نمودن مدار باعث سوختن فیوز می‌شود.

محافظت در لحظه راه‌اندازی: چنانچه اینورتر را بصورت شکل 3) در نظر بگیریم در لحظه‌ای که ولتاژ خازن پائین بوده و مدار به برق شهر متصل می‌گردد مسیری از طریق دیودهای موازی- معکوس برای شارژ اولیه خازن وجود دارد که جریان این شارژ اولیه می‌تواند تا چندین برابر جریان نامی کلیدها و دیودها باشد و حتی به خازنها نیز صدمه بزند ، برای جلوگیری از این موضوع همواره مقاومتی با این خازن سری بوده و در صورتی که ولتاژ آن از حدی بیشتر شود توسط رله ای این مقاومت اتصال کوتاه می‌گردد.

 

شکل3) اینورتر و مدار محافظت راه‌اندازی

-          محاسبه اندازه خازن: اندازه خازن با توجه به مقدار تضاریس قابل تحمل برای بخش مدولاسیون و کنترل کننده بصورت زیر محاسبه می‌شود:

(4)

 

که در طراحی مورد نظر مقدار ولتاژ خازنها را 310 ولت و مقدار تضاریس آنها را 40+ ولت در نظر گرفته شده‌است.


دانلود با لینک مستقیم


تحقیق درباره طراحی و ساخت جبران کننده ایستای توان راکتیو منبع

مقاله در مورد طراحی کنترل‌کننده بهینه فیدبک حالت و خروجی توان راکتیو

اختصاصی از فایلکو مقاله در مورد طراحی کنترل‌کننده بهینه فیدبک حالت و خروجی توان راکتیو دانلود با لینک مستقیم و پر سرعت .

مقاله در مورد طراحی کنترل‌کننده بهینه فیدبک حالت و خروجی توان راکتیو


مقاله در مورد طراحی کنترل‌کننده بهینه فیدبک حالت و خروجی توان راکتیو

لینک پرداخت و دانلود *پایین مطلب*

فرمت فایل:Word (قابل ویرایش و آماده پرینت)

 تعداد صفحه116

 

بخشی از فهرست مطالب

                    فهرست مطالب  

عنوان مطالب 

شماره صفحه

 

چکیده

1

فصل اول : پیشگفتار

2

1-1 مقدمه

3

1-2 انرژی باد

4

1-3 مزایای بهره برداری از انرژی باد

4

1-4 اهمیت کنترل توان راکتیو در نیروگاه بادی

5

1-5 پیکربندی پایان نامه

6

فصل دوم : مشخصه‌های سیستم‌های بادی

7

2-1 مقدمه

8

2-2- فن‌آوری توربین‌های بادی

9

 2-2-1- اجزای اصلی توربین بادی

11

 2-2-2- چگونگی تولید توان در سیستم‌های بادی

12

 2-2-3- منحنی پیش بینی توان توربین بادی

13

 2-2-4- پارامترهای مهم در توربین بادی

13

2-3- انواع توربین‌ها از لحاظ سیستم عملکرد

14

 2-3-1- عملکرد توربین‌های سرعت ثابت

14

  2-3-1-1- توربین‌های ممانعت قابل تنظیم سرعت ثابت

15

  2-3-1-2- توربین‌های ممانعت تنظیم شده دو سرعتی

15

  2-3-1-3- توربین‌های زاویة گام قابل تنظیم فعال سرعت ثابت

16

  2-3-1-4- توربین‌های زاویة گام قابل تنظیم غیر فعال

16

 2-3-2- الگوی عملکرد سرعت متغیر

16

  2-3-2-1- توربین‌های ممانعت تنظیم شده سرعت متغیر

17

  2-3-2-2- توربین‌های سرعت متغیر با زاویة گام قابل تنظیم فعال

17

  2-3-2-3- توربین‌های سرعت متغیر با محدوده عملکرد کوچک

18

2-4- کنترل توربین بادی

18

 2-4-1- فعالیت‌های قابل کنترل در توربین‌های بادی

19

 

 

فهرست مطالب

عنوان مطالب 

شماره صفحه

 

  2-4-1-1- کنترل گشتاور آیرودینامیکی

19

  2-4-1-2- کنترل گشتاور ژنراتور

20

  2-4-1-3- کنترل گشتاور ترمز

20

  2-4-1-4- کنترل جهت گیری دوران حول محور قائم

21

 2-4-2- کلیات عملکرد توربین‌های متصل به شبکه

21

2-5- ژنراتورهای مورد استفاده در توربین‌های بادی

22

 2-5-1- ژنراتورهای سنکرون

23

 2-5-2- ژنراتورهای جریان مستقیم

24

 2-5-3- ژنراتورهای القائی

25

 2-5-4- تحلیل عملکرد ژنراتور القائی

25

  2-5-4-1- راه‌اندازی توربین بادی با ژنراتور القائی

26

  2-5-4-2- تحلیل دینامیک ماشین القائی

27

  2-5-4-3- شرایط عملکرد خارج از محدوه طراحی

28

  2-5-4-4- مشخصه ژنراتور القایی دو سوتغذیه‌

28

خلاصه فصل 2

30

فصل سوم : مدلسازی ژنراتور القائی با تغذیه دو‌بل

31

3-1- مقدمه

32

3-2- عملکرد فوق سنکرون و زیر سنکرون ژنراتور القایی دو سو تغذیه

33

3-3- تبدیل قاب مرجع

35

 3-3-1- تبدیل قاب مرجع abc/dq

35

 3-3-2- تبدیل قاب مرجع abc به

39

3-4- مدل‌های ژنراتور القایی

39

 3-4-1- مدل بردار-فضا

40

 3-4-2- مدل قاب مرجع dq

43

3-5- مدل مرتبه 3 ژنراتور القایی  دو سو تغذیه

45

3-6- بیان پارامترها در سیستم پریونیت

45

فهرست مطالب

عنوان مطالب 

شماره صفحه

 

3-7- کنترل اینورتر متصل به شبکه

47

3-8- کنترل چرخش ولتاژ(VOC)

48

3-9- کنترل چرخش میدان(FOC)

51

خلاصه فصل 3

53

فصل چهارم : طراحی کنترل‌کننده بهینه فیدبک حالت و خروجی

54

4-1- مقدمه

55

4-2- مروری بر تحقیقات انجام شده در زمینه کنترل توان در DFIG

56

4-3- توصیف سیستم

58

4-4- مدل توربین بادی

59

4-5- مدل ژنراتور القایی دو سو تغذیه

60

4-6- مدل جعبه دنده

61

4-7- مدل فیلتر RL

62

4-8- فضای حالت سیستم

64

4-9- طراحی با جایدهی قطب

67

4-10- طراحی کنترل‌کننده برای مدل تقویت شده

71

4-11-شبیه سازی

73

4-12- طراحی کنترل‌کننده PI جهت کنترل سرعت روتور (wr)

83

خلاصه

86

فصل پنجم : نتیجه گیری و پیشنهادات

87

پیوست‌ها

91

منابع و مأخذ

92

فهرست منابع فارسی

93

فهرست منابع لاتین

95

چکیده انگلیسی

96

صفحه عنوان انگلیسی

97

اصالت نامه

98

فهرست شکل‌ها

عنوان 

شماره صفحه

 

شکل2-1- توربین‌های بادی مدرن واقع در مزرعه بادی

8

شکل2-2- انواع توربین‌های بادی

10

شکل 2-3- انواع توربین‌های بادی

11

شکل 2-4- دیاگرام سیستم بادی

12

شکل 2-5- منحنی توان بر حسب سرعت باد توربین بادی

13

شکل2-6- کلاس‌بندی ژنراتورهای الکتریکی که اغلب در توربین‌های بادی استفاده می‌شوند

23

شکل 2-7- منحنی توان، جریان و گشتاور ژنراتور القائی

26

شکل 2-8- منحنی افزایش جریان بر حسب کاهش فرکانس در ماشین القایی

28

شکل 2-9- دیاگرام بلوکی توان‌های جاری شده در ژنراتورهای القائی دو سو تغذیه

29

شکل 3-1- ساختار DFIG

32

شکل 3-2- مبدل پشت به پشت

32

شکل 3-3 الف : حالت فوق سنکرون

33

شکل 3-3 ب: حالت زیر سنکرون

34

شکل 3-4- مشخصه گشتاور – سرعت DFIG

34

شکل 3-5- بردار فضای x ومتغیرهای سه فازش xa,xb,xc

36

شکل 3-6- تبدیل متغیرها در قاب ساکن سه فاز(abc) به قاب دو فاز (dq)

37

شکل 3-7- تجزیه بردار فضای x به قاب مرجع گردان (dq)

38

شکل 3-8- دیاگرام ساده شده DFIG

40

شکل 3-9- مدار معادل بردار فضا ژنراتور القایی در قاب مرجع دلخواه

42

شکل 3-10- مدل ژنراتور القایی در قاب سنکرون

43

شکل 3-11- مدل ژنراتور القایی در قاب ساکن

43

شکل 3-12- اینورتر متصل به شبکه در سیستم مبدل بادی

47

شکل 3-13- دیاگرام فاز و PF

48

شکل 3-14- بلوک دیاگرام کنترل چرخش ولتاژ(VOC)

49

 

شکل 3-15- کنترل چرخش میدان شار روتور

52

شکل 4-1- منحنی مشخصه سرعت – توان توربین در زاویه گام صفر

59

شکل 4-2- سیستم کنترل حلقه باز

69

شکل 4-3- سیستم کنترل حلقه بسته

69

شکل 4-4- خطای حالت دائمی توان راکتیو سمت استاتور

70

شکل 4-5- خطای حالت دائمی توان راکتیو کانورترسمت شبکه (فیلتر RL)

71

شکل 4-6- پاسخ پله توان راکتیو سمت استاتور پیش از بهینه سازی

73

شکل 4-7- پاسخ پله توان راکتیو فیلتر RL پیش از بهینه سازی

74

شکل 4-8- پاسخ پله توان راکتیو سمت استاتور پس از بهینه‌سازی

74

شکل 4-9- پاسخ پله توان راکتیو فیلتر RL پس از بهینه سازی

75

شکل 4-10- نمودارسیگنال کنترل Vds پس از بهینه‌سازی

75

شکل 4-11- نمودارسیگنال کنترلVdg پس از بهینه‌سازی

76

شکل 4-12- نمودارسیگنال جریان مؤلفه d استاتور پس از بهینه‌سازی

77

شکل 4-13- نمودارسیگنال جریان مؤلفه d فیلتر RL پس از بهینه‌سازی

77

شکل 4-14- نمودارسیگنال جریان مؤلفه q فیلتر RL پس از بهینه‌سازی

78

شکل 4-15- نمودارسیگنال جریان مؤلفه q استاتور پس از بهینه‌سازی

78

شکل4-16- نمودارسیگنال جریان مؤلفه d روتور پس از بهینه‌سازی

79

شکل4-17- نمودارسیگنال جریان مؤلفه q روتور پس از بهینه‌سازی

79

شکل4-18- نمودارخطای حالت دائمی توان راکتیو استاتور

80

شکل4-19- نمودارخطای حالت دائمی توان راکتیو کانورتر سمت شبکه

80

شکل 4-20-  منحنی تغییرات سرعت روتور بر حسب پریونیت

81

شکل 4-21- پاسخ پله توان راکتیو سمت استاتور در سرعت روتور متغیر

82

شکل 4-22- پاسخ پله توان راکتیو فیلتر RL در سرعت روتور متغیر

82

شکل 2-23- نمودار بلوکی کنترل‌کننده PI

83

شکل4-24-  تعییرات سرعت روتور پس از طراحی کنترل‌کننده PI

83

شکل4-25- پاسخ پله توان راکتیو استاتور پس از طراحی کنترل‌کننده PI

84

شکل4-26-  پاسخ پله توان راکتیو فیلتر RL پس از طراحی کنترل‌کننده PI

84

شکل4-27-  سیگنال ولتاژ مؤلفه d استاتور پس از طراحی کنترل‌کننده PI

85

شکل4-28-  سیگنال ولتاژ مؤلفه d فیلتر RL پس از طراحی کنترل‌کننده PI

85

 

 


چکیده:

 

بالا بودن ضریب نفوذ باد در سیستم‌های الکتریکی متصل به شبکه، چالش‌های جدیدی را در رابطه با پایداری سیستم‌های قدرت به دنبال دارد. علیرغم ماهیت تصادفی باد، لازم است تا اطمینان به پایداری شبکه‌های قدرت تضمین شود. از آنجائیکه یکی از نیازهای جدید شرکت‌های تولیدکننده برق ازطریق انرژی باد، تنظیم ولتاژ می‌باشد، این پایان​نامه بر روی کنترل توان راکتیو در نیروگاه‌های بادی مجهز به ماشین‌های القایی دوسوتغذیه متمرکز شده است. در این پایان نامه یک نیروگاه بادی 9 مگاواتی شامل شش عدد توربین بادی 5/1 مگاواتی و ژنراتور القایی دو سو تغذیه ( بطوریکه همه توربین‌ها در یک راستا قرار گرفته و بادهای یکسانی را دریافت می‌کنند) مدلسازی شده است. در این مدل کانورترهای سمت روتور و شبکه با گین یک در نظر گرفته شده‌اند. برای کنترل توان راکتیو جاری شده در استاتور و فیلتر RL (این فیلتر کانورتر سمت شبکه را به شبکه متصل می‌کند) یک کنترل‌کننده فیدبک حالت و خروجی طراحی شده بطوریکه خروجی‌ها (توان‌های راکتیو جاری شده در استاتور و فیلتر RL)، ورودی‌های مرجع را دنبال کنند. بعد از طراحی کنترل‌کننده فیدبک حالت و خروجی، گین‌های این کنترل کننده با استفاده از روش نیوتن بهینه سازی شده‌اند. در این مدل در ابتدا سرعت روتور برابر با مقدار ثابتی در نظر گرفته شده، از آنجائیکه سرعت روتور در واقع مقدار ثابتی نیست و با تغییر سرعت باد ورودی به توربین، تغییر می‌کند و باعث نوسانی شدن توان‌های راکتیو می‌گردد، به همین جهت برای کنترل سرعت روتور نیز یک کنترل‌کننده PI طراحی شده است. نتایج شبیه‌سازی عملکرد صحیح سیستم پیشنهادی را نشان می‌دهد.

 

 


 

 

 

 

 

 

 

 

 

 

 

 

 

 

فصل اول

 

 

 

پیشگفتار

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1-1  مقدمه:

 

در طول بیست سال گذشته، به‌دلیل افزایش قیمت، محدود بودن منابع و اثرات مخرب زیست محیطی سوخت​های فسیلی، منابع انرژی تجدیدپذیر بسیار مورد توجه قرار گرفته‌‌اند. در همین حال، پیشرفت‌های فن‌آوری، کاهش قیمت و مشوق‌های دولتی باعث شده است تا پاره‌ایی از منابع انرژی تجدیدپذیر مقرون به صرفه و در بازار رقابت پذیر باشند. از این میان، انرژی باد یکی از سریعترین منابع انرژی تجدیدپذیری است که به سرعت در حال رشد و توسعه می‌باشد. انرژی باد سال‌های متمادی است که برای آسیاب کردن دانه‌های کشاورزی، پمپ کردن آب و دریا نوردی به‌کار برده شده است.

 

کاربرد آسیاب‌های بادی برای تولید برق به اواخر قرن نوزدهم برمی‌گردد؛ زمانیکه ژنراتور12 KW DC برای آسیاب‌های بادی ساخته شدند، اما این تنها در دهه 1980 میلادی است که صنعت به بلوغ کافی و لازم برای تولید برق به‌گونه‌ای اثر بخش و کارآمد دست می‌یابد.

 

در واقع ازسال 1975 پیشرفت‌های شگرفی در زمینه توربین‌های بادی در جهت تولید برق به‌عمل آمده است. در سال1980 اولین توربین برق بادی متصل به شبکه سراسری نصب گردید. بعد از مدت کوتاهی اولین مزرعه برق بادی چند مگاواتی در آمریکا نصب و به بهره برداری رسید. درپایان سال 1990 ظرفیت توربین‌های برق بادی متصل به شبکه در جهان به 200MW رسید که توانایی تولید سالانه 3200Gwh برق را داشته که تقریباً تمام این تولید مربوط به ایالات کالیفرنیا آمریکا و کشور دانمارک بود.[1]

 

امروزه کشورهای دیگر نظیر هلند، آلمان، بریتانیا، ایتالیا، اسپانیا، چین و هندوستان برنامه‌های ملی ویژه‌ایی را در جهت توسعه و عرضه تجاری انرژی باد آغاز کرده‌اند.

 

در طول دو دهه گذشته، مجموعه متنوعی از پیشرفت‌های تکنولوژی در صنایع تولید برق بادی بسط و توسعه یافته، بنحویکه نسبت تبدیل مؤثر تولید برق از باد و کاهش هزینه آن به صورت چشمگیری بهبود یافته است. توان توربین‌های بادی از چندین کیلووات به چندین و چند مگاوات در هر توربین افزایش یافته است. علاوه بر نصب توربین‌ها برروی خشکی، توربین‌های بادی بزرگتر به مناطق ساحلی دریاها رانده شده‌اند تا ضمن کاهش اثرات سوء آنها بر مناظر و مناطق خشکی، بتوانند انرژی بیشتری را جذب کنند.

 

 

 

 

 

 

 

1-2 انرژی باد:

 

هنگامی‌ که تابش خورشید به طور نامساوی به سطوح ناهموار زمین می‌رسد سبب ایجاد تغییرات در دما و فشار می‌گردد و در اثر این تغییرات باد به وجود می‌آید. همچنین اتمسفر کره زمین به دلیل حرکت وضعی زمین، گرما را از مناطق گرمسیری به مناطق قطبی انتقال می‌دهد که این امر نیز سبب به وجود آمدن باد می‌گردد. جریانات اقیانوسی نیز به طو مشابه عمل نموده و عامل 30٪ انتقال حرارت کلی در جهان می‌باشند. در مقیاس جهانی این جریانات اتمسفری به‌صورت یک عامل قوی جهت انتقال حرارت و گرما عمل می‌نمایند. دوران کره زمین نیز می‌تواند در برقراری الگوهای نیمه دائم جریانات سیاره‌ایی در اتمسفر، انرژی مضاعف ایجاد نماید. در حقیقت همان‌طور که عنوان شد باد یکی از صورت‌های مختلف انرژی خورشیدی می‌باشد که دارای یک الگوی جهانی پیوسته است.[2]

 

تغییرات سرعت باد، ساعتی، روزانه و فصلی بوده و متاثر از هوا و توپولوژی سطح زمین می‌باشد. بیشتر منابع انرژی باد در نواحی ساحلی و کوهستانی واقع شده‌اند.

 

 

 

1-3 مزایای بهره برداری از انرژی باد:

 

  • کاهش میزان مصرف سوخت‌های فسیلی
  • رایگان بودن انرژی باد
  • توانایی تأمین بخشی از تقاضای انرژی برق
  • کمتر بودن نسبی قیمت انرژی حاصل از باد نسبت به انرژی‌های فسیلی
  • کمتر بودن هزینه‌های جاری و هزینه‌های سرمایه گذاری انرژی باد در بلند مدت
  • عدم نیاز به آب
  • عدم نیاز به زمین زیاد برای نصب
  • کاهش آلودگی محیط زیست
  • افزایش قابلیت اطمینان در تولید انرژی برق

 

مشکلات عمده در نیروگاه‌های بادی عمدتاً شامل تغییرات در ولتاژ و فرکانس شبکه، عدم تعادل فازها و قطع شدن ناگهانی یک یا تمامی فازها و تغییرات شدید در سرعت باد است که باعث ناپایداری سیستم می‌شود.[3] در رابطه با  هر یک از این مشکلات تحقیقات و مطالعات متعددی صورت پذیرفته است. برای مثال در خصوص مشکلات مرتبط با ماهیت تصادفی باد می‌توان به تحقیق‌های [4و5] اشاره نمود که در این تحقیقات سیستم دینامیکی غیر خطی توربین بادی مدلسازی شده و یک کنترل کننده فیدبک بهینه تصادفی برای این سیستم طراحی شده است. در تحقیق [6] نیز به ارزیابی و مقایسه توربین‌های سرعت ثابت و متغیر جهت بهینه سازی دریافت انرژی بادی پرداخته شده است.

 

 

 

 

 

1-4 اهمیت کنترل توان راکتیو در نیروگاه‌های بادی

 

با افزایش استفاده از انرژی باد در شبکه‌های قدرت، تولید توان و پایداری شبکه موضوعاتی کلیدی در دهه اخیر شده است. وابستگی به شرایط واقعی باد همچنان یک فاکتور ریسکی در نگهداری سطح متوازنی میان عرضه انرژی و تقاضای آن به عنوان شرط اصلی برای عملکرد قابل اطمینان از سیستم توان الکتریکی است.[7]

 

بررسی به‌عمل آمده در آمریکا و کانادا در سال 2003 نشان داده که با کنترل توان راکتیو می‌توان از قطعی‌های متوالی خطوط انتقال و واحدهای تولیدی جلوگیری کرد. بنابراین بعضی از پیشنهادات پیرامون این موضوع  ارائه شده است[8].

 

شرکت‌های برق اروپایی راهبرد‌هایی را برای اتصال مزارع بادی به خطوط انتقال با سطح ولتاژ بالا ارائه کرده‌اند. این استانداردهای شبکه (کدهای شبکه[1]) الزامات مشابهی (نظیر پایداری شبکه در عملکرد عادی و تحت شرایط خطا)  که برای سیستم‌‌های تولیدی متداول بوده را، برای مبدل‌های توان بادی نیز وضع کرده‌اند. در مدت عملکرد نرمال، این استانداردها (پایداری شبکه در عملکرد عادی و تحت شرایط خطا) به معنای قابلیت تنظیم فرکانس، از طریق کنترل توان اکتیو و تنظیم ولتاژ از طریق کنترل توان راکتیو است.

 

یکی از انواع توربین‌های بادی سرعت متغیر، توربین‌های بادی با ژنراتورالقایی دو سو تغذیه (DFIG) می‌باشد که امروزه به عنوان یکی از رایج‌ترین و پرطرفدارترین توربین‌های بادی در جهان به‌حساب می‌آید. در این پایان نامه یک مزرعه بادی مجهز به این نوع توربین بادی به همراه سیستم کنترل توان راکتیو با استفاده از نرم افزار متلب ارئه شده است.

 

تا کنون روش‌های مختلفی برای کنترل توان توربین‌های بادی DFIG ارائه شده است که از جمله آن می‌توان به تولید توان اکتیو تحت شرایط نامتعادل [10]، کنترل جداگانه گشتاور الکترومغناطیسی و توان راکتیو برای ژنراتورهای دو سو تغذیه[2] (DFIG)[11]، کنترل توان با استفاده از ازکانورتر منبع جریان [12] و کاربرد کانورتر سمت شبکه به صورت یک فیلتر اکتیو موازی برای تولید توان راکتیو و جبران هارمونیک و استفاده از اینورتر سمت روتور (RSI) تنها برای تولید توان اکتیو [13] ارائه شده است.

 


[1] Grid Cods

[2] Doubly Fed Induction Generator

 


دانلود با لینک مستقیم


مقاله در مورد طراحی کنترل‌کننده بهینه فیدبک حالت و خروجی توان راکتیو

تحقیق در مورد رنگرزی با رنگ های راکتیو و تأثیر در شید رنگی و تأثیر دما و قلیل و نمک بر روی کالای سلولزی

اختصاصی از فایلکو تحقیق در مورد رنگرزی با رنگ های راکتیو و تأثیر در شید رنگی و تأثیر دما و قلیل و نمک بر روی کالای سلولزی دانلود با لینک مستقیم و پر سرعت .

تحقیق در مورد رنگرزی با رنگ های راکتیو و تأثیر در شید رنگی و تأثیر دما و قلیل و نمک بر روی کالای سلولزی


تحقیق در مورد رنگرزی با رنگ های راکتیو و تأثیر در شید رنگی و تأثیر دما و قلیل و نمک بر روی کالای سلولزی

لینک پرداخت و دانلود *پایین مطلب*

فرمت فایل:Word (قابل ویرایش و آماده پرینت)

 تعداد صفحه10

 

هدف: رنگرزی با رنگ های راکتیو و تأثیر در شید رنگی و تأثیر دما و قلیل و نمک بر روی کالای سلولزی.

مقدمه و تئوری:

براساس شواهد تجربی و عوامل شیمیایی به کار رفته انتشار و نفوذ رنگ ها و سایر مولکول های نافذ در مناطق کریستالی به مناطقی که تا درجه معینی منظم هستند میسر نیست و اینگونه مناطق معمولاً مناطق غیر قابل دسترس در برابر نفوذ مواد شیمیایی از جمله رنگ می باشند و لذا نفوذ رنگ ها و سایر مواد محدود به مناطق بی نظمی است که برای آن ها قابل دسترسی می باشد.

چنین مناطقی شامل محدوده ای از مناطق با درجه نظم پایین تا مناطق کاملاً آمورف می باشد.

تورم و یا تغییر در ساختمان لیف جهت افزایش درجه نفوذ و رنگ پذیری آن با استفاده از مولکول های نافذی مانند آب و یا حلالهای آلی امکان پذیر و در حدی متداول می باشد. بنابراین سرعت و یکنواختی و فاکتورهای مهم دیگر در رنگرزی مستقیماً تخت تأثیر ساختمان ظریف و درونی الیاف می باشد.

خصوصیات رنگرزی الیاف پنبه به 2 عامل بستگی دارد:

  • قطر لیف
  • ساختمان داخلی لیف.

هرچه لیف ظریف تر باشد سرعت رنگرزی آن بالاتر خواهد بود. علت اینکه این رنگ ها را مستقیم نامیده اند. این است که کلاس رنگی اولین کلاسی بود که قابلیت رنگرزی پنبه را به طور مستقیم دارا بود. علاوه بر صنعت نساجی از این کلاس رنگی در صنایع دیگری مانند چرم و کاغذ نیز استفاده می گردد. اکثر رنگینه های مستقیم دارای پایه آرزو هستند. یک نمونه از این رنگینه ها رنگینه زرد Dir Golden yellow 2RS می باشد.

 

 

اصول جذب رنگینه های مستقیم:

رنگینه مستقیم در محلول رقیق آبکی به صورت ذرات مجتمع شده وجود دارد. در چنین حالتی از مجموع سطوح خارجی مولکول های رنگ کاسته شده و لذا از سطح تماس بین رنگ و لیف کاسته می گردد و وقوع چنین امری از نیروی جاذبه بین رنگ و لیف خواهد کاست. از سوی دیگر منافذ داخلی الیاف نیز اندازه محدود و معینی داشته و به اندازه ای بزرگ نیستند که بیش از 2 یا 3 مولکول مجتمع شده وارد آن ها شوند با عنایت به 2 مورد فوق به نظر می رسد که شکستن ذرات مجتمع شده جهت غلبه بر مشکلات رنگرزی ضروری است. آزمایشات انجام شده نشان داده است که درجه تجمع رنگ ها در حرارت های 100 ـ 90 خیلی کم بوده و بخش بیشتر رنگ ها به صورت مولکول های جداگانه در می آیند.

عوامل مؤثر در جذب و یکنواختی رنگ و رنگرزی عبارت است از:

1- حرارت    2- زمان رنگرزی      3- L:R     4- نمک       5- حلالیت اولیه رنگ های مستقیم.

راحت ترین رنگرزی را دارد ولی کم ثبات ترین رنگینه است. مکانیزم رنگرزی بر مبنای تشکیل پیوند و اندروالس و هیدروژنی می باشد. همانطوری که می دانیم گروه OH موجود در لیف تمایلی به از دست دادن الکترون دارد در نتیجه باند هیدروژنی بین رنگزا و لیف تشکیل


دانلود با لینک مستقیم


تحقیق در مورد رنگرزی با رنگ های راکتیو و تأثیر در شید رنگی و تأثیر دما و قلیل و نمک بر روی کالای سلولزی

سمینار کارشناسی ارشد نساجی توسعه رنگ های راکتیو ساختار شیمیایی و کاربرد آنها در نساجی

اختصاصی از فایلکو سمینار کارشناسی ارشد نساجی توسعه رنگ های راکتیو ساختار شیمیایی و کاربرد آنها در نساجی دانلود با لینک مستقیم و پر سرعت .

سمینار کارشناسی ارشد نساجی توسعه رنگ های راکتیو ساختار شیمیایی و کاربرد آنها در نساجی


سمینار کارشناسی ارشد نساجی توسعه رنگ های راکتیو ساختار شیمیایی و کاربرد آنها در نساجی

این محصول در قالب پی دی اف و 107 صفحه می باشد.

این سمینار جهت ارائه در مقطع کارشناسی ارشد نساجی-شیمی نساجی و علوم الیاف طراحی و تدوین گردیده است. و شامل کلیه موارد مورد نیاز سمینار ارشد این رشته می باشد. نمونه های مشابه این عنوان با قیمت بسیار بالایی در اینترنت به فروش می رسد.گروه تخصصی ما این سمینار را با قیمت ناچیز جهت استفاده دانشجویان عزیز در رابطه به منبع اطلاعاتی در اختیار شما قرار می دهند. حق مالکیت معنوی این اثر مربوط به نگارنده است. و فقط جهت استفاده از منابع اطلاعاتی و بالا بردن سطح علمی شما در این سایت قرار گرفته است.


دانلود با لینک مستقیم


سمینار کارشناسی ارشد نساجی توسعه رنگ های راکتیو ساختار شیمیایی و کاربرد آنها در نساجی