فایلکو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

فایلکو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

تحقیق درباره احتراق

اختصاصی از فایلکو تحقیق درباره احتراق دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 4

 

احتراق (combustion)

احتراق یا سوختن سلسله واکنش های پیچیده شیمیایی گرمازایی است که بین یک سوخت (معمولا هیدروکربن) و یک اکسید کننده رخ می دهد و همراه با تولید حرارت یا حرارت و نور به صورت گداختگی یا شعله می باشد.

احتراق مستقیم با اکسیژن اتمسفری واکنشی است که توسط رادیکال های واسط ایجاد می شود. شرایط تولید رادیکال با فرار حرارتی (thermal runaway) ایجاد می شود. در واقع حرارت تولید شده توسط احتراق برای تولید دمای بالای لازم برای تولید رادیکال ضروری است. 

در یک واکنش احتراق کامل یک ترکیب با یک عنصر اکسید کننده، مثل اکسیژن یا فلئور، واکنش می دهد و محصولات واکنش ترکیب هایی از هر یک از عناصر تشکیل دهنده سوخت و عنصر اکسید کننده می باشند. برای مثال:

CH4 + 2O2 → CO2 + 2H2O

CH2S + 6F2 → CF4 + 2HF + SF6

یک مثال ساده تر در احتراق هیدروژن با اکسِیژن دیده می شود، که یک واکنش متداول در موتور موشک است:

2H2 + O2 → 2H2O(g) + heat

محصول واکنش بخار آب است.

در بیشتر کاربردهای واقعی احتراق، هوا منبع اکسِژن(O2) است. در هوا هر kg (lbm) اکسیژن با حدود 3.76kg(lbm) نیتروژن ترکیب شده است. بنابراین گازهای حاصل از احتراق هم شامل نیتروژن خواهند بود:

CH4 + 2O2 + 7.52N2 → CO2 + 2H2O + 7.52N2 + heat

هنگامی که هوا منلع اکسِیژن باشد، نیتروژن بخش عمده ای از گازهای خروجی را تشکیل خواهد داد.

در واقعیت هیچ گاه فرآیندهای احتراق کامل نمی باشند. در گازهای حاصل از احتراق کربن (مثل احتراق زغال) یا ترکیب های کربن (مثل احتراق هیدروکربن ها، چوب و ...) کربن نسوخته (مثل دوده) و ترکیب های کربن (CO و سایر ترکیب ها) وجود خواهند داشت.همچنین اگر اکسید کننده هوا باشد، ممکن است مقداری نیتروژن اکسید شده و اکسیدهای وتفاوت نیتروژن تولید شوند (NOx).

انواع احتراق:

احتراق سریع(rapid combustion) :

در احتراق سریع مقادیر زیادی انرژی حرارتی و نورانی آزاد می شوند، که اغلب منجر به حریق می شود. از این نوع احتراق در بعضی ماشین آلات مثل موتورهای احتراق داخلی استفاده می شود. گاهی اوقات علاوه بر تولید حرارت و نور حجم زیادی گاز هم آزاد می شود. تولید ناگهانی مقادیر زیاد گاز فشار زیادی به وجود می آورد که این امر باعث ایجاد صدای بلندی می شود. به چنین فرآیند احتراقی، انفجار گفته می شود. احتراق الزاما نیازی به اکسیژن ندارد. برای مثال هیدروژن در کلر می سوزد و کلرید هیدروژن و حرارت و نور، که مشخصه های احتراق هستند تولد می کند.

احتراق آرام (slow combustion):

احتراق آرم به فرآیند احتراقی گفته می شود که در دماهای پایین اتفاق می افتد. تنفس سلولی یک مثال از احتراق آرام می باشد.

احتراق کامل(complete combustion) :

در احتراق کامل جزء واکنش دهنده در اکسیژن می سوزد و تعداد محدودی محصول تولید می کند. وقتی یک هیدروکربن در اکسیژن می سوزد، محصولات واکنش فقط دی اکسید کربن و آب خواهند بود. وقتی یک هیدروکربن یا هر سوخت دیگری در هوا بسوزد، محصولات احتراق شامل نیتروژن هم خواهند بود. وقتی عناصری مثل کربن، نیتروژن، گوگرد و آهن می سوزند، متداول ترین اکسیدها را تولید می کنند. کربن دی اکسید کربن تولید می کند. نیتروژن دی اکسید نیتروژن تولید می کند. گوگرد دی اکسید گوگرد تولید می کند. آهن اکسید آهن(III) تولید می کند. باید توجه داشت که تقریبا هیچ احتراق کاملی نمی تواند رخ دهد. در واقعیت وقتی واکنش های احتراقی واقعی به شرایط تعادل می رسند، طیف گسترده ای از اجزاء وجود خواند داشت. به عنوان مثال در احتراق متان در هوا، علاوه بر محصولات اصلی احتراق ،که دی اکسید کربن و آب می باشند، محصولات واکنش های فرعی مثل مونواکسید کربن و اکسیدهای نیتروژن هم تولید خواهند شد.

احتراق آشفته(turbulent combustion):

احتراق آشفته (turbulent combustion) نوعی فرآیند احتراقی است که با جریان های آشفته مشخص می شود. این نوع احتراق در کاربردهای صنعتی( مثل توربین های گازی، موتورهای بنزینی و ...)  بیشترین کاربرد را دارد.  

احتراق میکروگرانشی (Microgravity combustion):

تقریبا هر شعله ای در محیط های میکرو گرانشی رفتار متفاوتی دارد، برای مثال شعله یک شمع به شکل کره در می آید. مطالعات احتراق میکرو گرانشی به درک بهتر امنیت حریق فضا پیما ها و جنبه های متفاوت فیزیک احتراق کمک می کند.

احتراق ناقص(incomplete combustion):

هنگامی که اکسیژن کافی برای واکنش دادن سوخت (معمولا هیدروکربن) با اکسیژن برای تولید دی اکسید کربن و آب .جود ندراد، همچنین هنگامی که احتراق توسط یک چاه حرارتی، مثلا یک سطح جامد، دفع می شود، احتراق ناقص رخ می دهد. هنگامی که یک هیدروکربن در هوا می سوزد، دی اکسید کربن، آب، مونواکسید کربن، کربن خالص ( دوده یا خاکستر) و ترکیبات متنوع دیگری از جمله اکسیدهای نیتروژن تولید می شوند.

کیفیت احتراق را می توان با طراحی تجهیزات مربوط به احتراق، از جمله مشعل و موتورهای احتراق داخلی، بهبود بخشید. بهسازی های بیشتر را می توان با استفاده از کاتالیست های در دسترس بعد از احتراق ( مثل مبدل های کاتالیستی) یا با بازخوراندن بخشی از گازهای خروجی به فرآیند احتراق ایجاد کرد. استفاده از چنین تجهیزاتی با توجه به قوانین زیست محیطی در بسیاری از کشورها لازم است و ممکن است در برخی تجهیزات احتراقی بزرگ، مثل نیروگاه های حرارتی، برای کسب استاندارهای خاص ضروری باشند.

درجه احتراق را می توان با تجهیزات آزمایشگاهی اندازه گیری و تجزیه و تحلیل کرد. پقاطعه کاران تهویه و مطبوع، آتش نشان ها و مهندسین از انالیزورهای احتراق برای بررسی کارایی یک مشعل در حین فرآیند احتراق استفاده می کنند. علاوه بر این کارایی یک موتور احتراق داخلی را هم می توان به همین صورت اندازه گیری کرد. اکنون در برخی مناطق مسئولین با استفاده از آنالیز احتراق نسبت کارایی وسائل نقلیه در حال تردد را تعیین می کنند.

منبع:

سایت ویکیپدیا


دانلود با لینک مستقیم


تحقیق درباره احتراق

احتراق در موتورهای اشتعال – جرقه ای

اختصاصی از فایلکو احتراق در موتورهای اشتعال – جرقه ای دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 54

 

احتراق در موتورهای اشتعال – جرقه ای

موتورهای اشتعال ( احتراق ) جرقه ای یا اتو

اصول کارکرد

این سیستم ، یک موتور احتراقی می باشد که با استفاده از اشتعال بیرونی ، انرژی موجود در سوخت ( بنزین ) را به انرژی جنبشی ( سینتیک ) تبدیل می کند .

این نوع موتورها برای کارکرد خود از یک مخلوط سوخت – هوا ( بر پایه بنزین یا گاز ) استفاده می کنند .

هنگامی که پیستون در داخل سیلندر به سمت پایین حرکت می کند مخلوط سوخت هوا به داخل سیلندر کشیده شده و هنگامی که پیستون به سمت بالا حرکت می کند این مخلوط به صورت متراکم در می آید.

این مخلوط ، سپس در فواصل زمانی معین و توسط شمع ها ، جهت احتراق آماده می شود . گرمایی که در طی مرحله احتراق حاصل می شود باعث بالا رفتن فشار سیلندر گردیده و سپس پیستون باعث به حرکت درآمدن میل لنگ شده و در نتیجه این فعل و انفعال ، انرژی مکانیکی ( قدرت ) حاصل می گردد .

پس از هر مرحله احتراق کامل ، گازهای موجود از سیلندر خارج شده و مخلوط تازه ای از سوخت – هوا به داخل سیلندر کشیده ( وارد )می شود . در موتوراتومبیلها تبدیل گازها ( جابه جایی گازهای موجود ) بر اساس اصول چهار مرحله آغاز احتراق ( چهار حالت موتور ) و نیز حرکت میل لنگ که برای هر احتراق کاملی مورد نیاز می باشد ، صورت می گیرد . ( شکل 1 )

اصول کارکرد موتورهای چهار زمانه ای

موتورهای احتراقی چهار زمانه ای از سوپاپهایی جهت کنترل جریان گاز بهره می گیرند .

چهار حالت موتور عبارتند از :

حالت تنفس

حالت تراکم و جرقه

حالت انفجار

حالت تخلیه

-حالت تنفس

سوپاپ هوا ( ورودی ) : باز

سوپاپ دود ( خروجی ) : بسته

حرکت پیستون : به سمت پایین

احتراق : وجود ندارد .

حرکت رو به پایین پیستون باعث افزایش حجم مفید داخل سیلندر شده و بدین طریق مخلوط سوخت – هوای تازه از داخل سوپاپ ورودی ، وارد سیلندر می شود .

حالت تراکم و جرقه

سوپاپ هوا( ورودی ) : بسته

سوپاپ دود ( خروجی ) : بسته

حرکت پیستون : به سمت بالا

احتراق : فاز اشتعال اولیه

هنگامی که پیستون به سمت بالا حرکت می کند باعث کاهش حجم مفید سیلندر شده و مخلوط سوخت – هوا را متراکم می کند .

درست چند لحظه قبل از رسیدن پیستون به نقطه مرگ بالا شمع بالای سیلندر جرقه زده و باعث احتراق مخلوط سوخت – هوا می شود .

نسبت تراکم توسط مقدار حجم سیلندر و حجم تراکم مطابق ذیل محاسبه می شود:

ε=( V n + Vc ) Vc

نسبت تراکم در خودروهای مختلف بستگی به طراحی موتور دارد .

افزایش نسبت تراکم در موتورهای احتراق داخلی ، باعث افزایش بازده گرمایی و مصرف سوخت می گردد .

به طور مثال افزایش نسبت تراکم از 6:1 به 8:1 باعث زیاد شدن بازده گرمایی به مقدار 12 درصد می گردد .

آزادی عمل در افزایش نسبت تراکم ، توسط عامل به نام « ضربه » ( یا پیش اشتعال ) محدود می شود . « ضربه » بر اثر فشار ناخواسته و احتراق کنترل نشده به وجود می آید . این عامل باعث به وجود آمدن خساراتی به موتور می شود .

سوختهای نامناسب و نیز شکل نامناسب محفظه احتراق باعث بوجود آمدن این پدیده در نسبت تراکم های بالاتر می شود .

-مرحله قدرت

سوپاپ هوا ( ورودی ) : بسته

سوپاپ دود ( خروجی ) : بسته

حرکت پیستون : به سمت بالا

احتراق : به صورت کامل انجام گرفته است .


دانلود با لینک مستقیم


احتراق در موتورهای اشتعال – جرقه ای

مقاله بررسی سیستم انتقال قدرت در خودروهای برقی و مقایسه آن با سیستم انتقال قدرت در خودروهای احتراق

اختصاصی از فایلکو مقاله بررسی سیستم انتقال قدرت در خودروهای برقی و مقایسه آن با سیستم انتقال قدرت در خودروهای احتراق دانلود با لینک مستقیم و پر سرعت .

مقاله بررسی سیستم انتقال قدرت در خودروهای برقی و مقایسه آن با سیستم انتقال قدرت در خودروهای احتراق


مقاله بررسی سیستم انتقال قدرت در خودروهای برقی و مقایسه آن با سیستم انتقال قدرت در خودروهای احتراق

 

این محصول در قالب ورد و قابل ویرایش در 149 صفحه می باشد.

فهرست مطالب
بخش اول : نحوه تأمین انرژی و عملکرد خودروی برقی
مقدمه ۲
فصل اول: خصوصیات خودرو برقی
۱-۱ تعریف خودرو برقی ۳
۱-۲ تاریخچه تولید خودرو برقی ۴
۱-۳ انواع موتورهای الکتریکی و مقایسه آن ۶
۱-۳-۱ موتورهای الکتریکی جریان مستقیم ۷
۱-۳-۲ موتورهای الکتریکی جریان متناوب ۸
۱-۴ باتری های قابل استفاده در خودروی برقی ۱۰
۱-۵ سیستم های تولید و انتقال نیروبرای خودرو های الکتریکی تولید انبوه ۱۵
۱-۵-۱ خودرو برقی با موتورجریان مستقیم dc ۱۷
۱-۵-۲ خودروی برقی با موتورجریان متناوب ac ۱۹
۱-۵-۳ خودروهای دو منظوره ۲۱
۱-۶ مشکلات تحقیقاتی و نتیجه گیری ۲۴
فصل دوم: سیستم انتقال قدرت و محاسبه توان مورد نیاز
۲-۱ تأثیر وزن در خودروی برقی ۲۵
۲-۱-۱ تأثیر وزن بر شتاب ۲۶
۲-۱-۲ تأثیر وزن در شیب ها ۲۶
۲-۱-۳ تأثیر وزن بر سرعت ۲۷
۲-۱-۴ تأثیر وزن بر مسافت طی شده ۲۷
۲-۱-۵ توزیع وزن ۲۷
۲-۲ نیروی مقاومت هوا ۲۸
۲-۳رانندگی در جاده ۳۱
۲-۳-۱ توجه به تایر های خودرو ۳۲
۲-۳-۲ محاسبه نیروی مقاومت غلتشی یک خودرو ۳۴
۲-۴ تجهیزات انتقال قدرت ۳۴
۲-۴-۱ سیستم های انتقال قدرت ۳۵
۲-۴-۲ تفاوت مشخصات موتور الکتریکی وموتور احتراقی ۳۶
۲-۴-۳ بررسی دنده ها ۳۹
۲-۴-۴ جعبه دنده اتوماتیک و دستی ۴۰
۲-۴-۵ سیستم های انتقال قدرت و سیال های سبک یا سنگین برای روان کاری ۴۰
۲-۵ مشخصات خودروهای برقی ۴۲
۲-۵-۱ توان و گشتاور ۴۳
۲-۵-۲ محاسبه گشتاور لازم خودرو ۴۶
۲-۵-۳ محاسبه گشتاور خروجی موتور ۴۶
۲-۵-۴ مقایسه منحنی های گشتاور لازم وگشتاورخروجی موتور ۴۷
فصل سوم: طراحی سیستم انتقال قدرت پیکان برقی تبدیلی
۳-۱مشخصات کلی خودروی درون شهری پیکان برقی ۴۹
۳-۱-۱ شتابگیری مناسب ۴۹
۳-۱-۲ سرعت میانگین پیشینه ۴۹
۳-۱-۳ تأثیر شیب ۵۰
۳-۱-۴ برد ۵۰
۳-۲ محاسبه توان مورد نیاز خودرو ۵۰
۳-۲-۱ محاسبه نیروی شتابگیری ۵۱
۳-۲-۲ نیروی حرکت در شیب ۵۳
۳-۲-۳ نیروی مقاومت غلتشی ۵۳
۳-۲-۴ نیروی مقاومت هوا ۵۳
۳-۲-۵ نیروی مقاومت وزش باد ۵۴
۳-۲-۶ رسم منحنی گشتاور و توان ۵۴
۳-۳ طراحی قطعات مورد نیاز سیستم انتقال قدرت ۵۸
۳-۳-۱ فلایول ۵۸
۳-۳-۲ بوش نگهدارنده فلایول ۶۱
۳-۳-۳ محاسبه فلنج پوسته ۶۳
۳-۳-۴ طراحی شاسی زیر موتور ۶۴
بخش دوم: نحوه تأمین انرژی و عملکرد خودروی خورشیدی
مقدمه ۶۸
فصل اول : سلولهای خورشیدی
۱-۱ توضیحات کلی ۷۲
۲-۱ بازدهی سلول ۷۳
۳-۱ انواع سلولهای سیلیکونی ۷۳
۴-۱ فناوریهای تولید ۷۴
۱-۴-۱ Screen printed ۷۴
۵-۱ مکانیزم کارکرد سلولهای خورشیدی ۷۴
۱-۵-۱ نحوه کارکردن سلولهای خورشیدی(فتوولتاییکpv) ۷۴
۲-۵-۱ سیلیکون در سلولهای خورشیدی ۷۶
۳-۵-۱هنگامی که نور به سلولهای خورشیدی برخورد می کند ۸۰
فصل دوم: طراحی بدنه و شاسی
۱-۲ مقدمه ۸۱
۲-۲ بارهای وارده به شاسی ۸۳
۱-۲-۲ بارهای استاتیکی ۸۳
۲-۲-۲ بارهای دینامیکی(مربوط به سیستم تعلیق) ۸۳
۳-۲-۲ نیاز مندیها ۸۳
۴-۲-۲ انواع شاسیها ۸۴
۵-۲-۲ فرم فضایی ۸۴
۶-۲-۲ مواد به کار رفته در شاسیها ۸۵
۷-۲-۲ مونوکوکهای کامپوزیتی ۸۶
۸-۲-۲ جای راننده ۸۶
فصل سوم: ناحیه خورشیدی
۱-۳ مقدمه ۸۷
۲-۳ بررسی عوامل گوناگون ۸۷
۱-۲-۳ خنک نگهداشتن ناحیه ۸۷
۲-۲-۳ چیدن سلولها ۸۷
۳-۲-۳ اتصال داخلی سلولها ۸۸
۴-۲-۳ پوششها ۸۸
۳-۳ حفاظ سلولها ۸۸
۱-۳-۳ فناوریها ۸۹
۴-۳ تکسچرد کردن و ضد انعکاس کردن پوشش AR ۸۹
۵-۳ طراحی ناحیه سلولهای خورشیدی و زیر ساخت آن برای یک مدل کوچکتر ۹۰
۱-۵-۳ وضعیت الکتریکی ناحیه پانل خورشیدی ۹۳
۲-۵-۳ نکات استنتاجی ۹۶
۶-۳ نتایج بدست آمده برای یک نمونه ناحیه خورشیدی ۹۶
۱-۶-۳ مشخصات ناحیه ۹۶
فصل چهارم: تحلیل آیرودینامیکی
۱-۴ مقدمه ۹۷
۲-۴ طراحی پیکره اصلی ۹۷
۱-۲-۴ قوانین مسابقه ۹۷
۳-۴ نحوه طراحی با توجه به قوانین مسابقه ۹۷
۴-۴ نحوه طراحی برای دراگ پایین ۹۹
۵-۴ نحوه طراحی برای یک پایداری مناسب ۱۰۱
۶-۴ نیازهای اضافی توان خورشیدی ۱۰۲
۷-۴ نحوه طراحی ناحیه خورشیدی ۱۰۳
۸-۴ ساختن شکل اصلی به صورت تجربی ۱۰۶
۹-۴ تحلیل طراحی ۱۰۶
۱۰-۴ خواندن نقشه ها برای CFD ۱۰۷
۱۱-۴ نتایج CFD ۱۰۸
۱۲-۴ طراحی دوباره براساس CFD ۱۱۰
۱۳-۴ نتایج CFD از تحلیل دوم ۱۱۰
۱۴-۴ نتایج بدست آمده در مورد شکل و ترکیب بدنه ۱۱۰
فصل پنجم : سیستم های مکانیکی
۱-۵ مقدمه ۱۱۲
۲-۵ سیستم رانش ۱۱۴
۱-۲-۵ بررسی عملکرد سیستم رانش ۱۱۵
۲-۲-۵ انواع مکانیزمها ۱۱۵
۳-۲-۵ انواع سیستمهای انتقال قدرت ۱۱۷
۳-۵ سیستم تعلیق ۱۱۸
۱-۳-۵ معایب ۱۱۸
۲-۳-۵ مزایا ۱۱۸
۳-۳-۵ رفتارهای دلخواه از تعلیق ۱۱۹
۴-۳-۵ اجزا ۱۱۹
۵-۳-۵ انواع سیستم تعلیق ۱۱۹
۴-۵ ترمزها ۱۲۱
۱-۴-۵ انواع ترمزها ۱۲۱
۲-۴-۵ مشکلات ۱۲۲
۳-۴-۵ توضیح ۱۲۲
۵-۵ چرخ ها و تایرها ۱۲۲
۱-۵-۵ انواع چرخها ۱۲۲
۲-۵-۵ تایرها ۱۲۴
۳-۵-۵ تأثیر عوامل مختلف بر مقاومت غلتش تایرها ۱۲۴
فصل ششم : موتور
۱-۶ انواع موتور ۱۲۶
۱-۱-۶ القاییAC ۱۲۶
۲-۱-۶ مقاومت متغیر ۱۲۶
۳-۱-۶ DC جارو بک شده ۱۲۶
۴-۱-۶ DC بدون جاروبک ۱۲۷
۵-۱-۶ موتورهای چرخ ۱۲۷
غزال ایرانی ۱۲۸
چکیده غیر فارسی ۱۳۹
منابع ۱۴۰
فهرست مراجع و منابع
۱٫Rajasekare . k, History of Electric Vehicles in General Motors,IEEE Transactions on industry applications, Vol 30,No.4,August 1994
2. Brant.B,Build your own Electric Vehicle,TAB Books,UASA,1994
3. Rowland ,E.A, Schwarze K.W, System Design of the Electric Test Vehicle one (ETV-1),international congress & Exposition ,Detroit ,MI February 1980
4- طرح و بررسی ساخت خودروی برقی ، شرکت ایران خودرو
۵- طراحی خودروی پیکان برقی ، دانشگاه علم و صنعت ایران
چکیده :
این پروژه بر اساس تحقیق و طراحی یکی از برنامه های اصلی صنعت در چند ساله اخیر در مورد خودروهای برقی تهیه و تدوین شده است واین پروژه به بررسی سیستم انتقال قدرت در خودروهای برقی و مقایسه آن با سیستم انتقال قدرت در خودروهای احتراق داخلی می پردازد .
سالهای ابتدایی ساخت خودروهای برقی به سال ۱۹۰۰ میلادی بر می گردد که در آن زمان از یک طرف به علت مشکلاتی که موتورهای الکتریکی دارا بودند و از طرف دیگر اکتشاف جدید نفت و تولید فراوان آن در پیشرفت چشمگیر موتورهای احتراق داخلی ساخت این خودروها مورد توجه قرار نمی گرفت . ولی با به وجود آمدن جنگهای جهانی و کشمکش های بر سرنفت باعث شد این ماده ارزش بیشتری پیدا کند و توجه ها بیشتر به خودروهای برقی جذب شود و این بود که از سال ۱۹۹۰ میلادی تولید خودروهای برقی به طور جدی تری مورد توجه قرار گرفت .
در خودروهای برقی سیستم تأمین قدرت شامل یک موتور الکتریکی ، کنترلر ، باتریها و شارژر آن می باشد مجموعه محرک برقی خودروی برقی وظیفه دارد جریان مستقیم تولید شده توسط باتری را به انرژی مکانیکی تبدیل نماید که منظور از مجموعه محرک کلیه قطعاتی است که جریان مستقیم باتری ها را به نیروی کششی و گشتاور لازم برای حرکت چرخها تبدیل می کنند از مهمترین ویژگیهای خودروی برقی برد و قدرت حرکت (‌شتاب ، سرعت ، شیب روی ، و بارگیری و انعطاف پذیری) و مدت شارژ و قیمت بالای باتریها در اغلب خودروهای برقی موجود مجموعه محرک است .

مقدمه :
به علت پیشرفت روز افزون صنعت خودرو و تولید انبوه خودروهای احتراق داخلی که مشکلات گوناگونی از قبیل آلودگی هوا بوجود می آورد و نیز محدود بودن ذخایر سوخت فسیلی و گران بودن آن تحقیق و طراحی در مورد خودروهای برقی به یکی از برنامه های اصلی صنعت خودرو مخصوصاً در کشورهای پیشرفته اروپایی و آمریکایی بدل شده است ایران نیز در چند ساله اخیر تحقیقاتی در این زمینه انجام داده است شرکتهای ایران خودرو، سایپا و کیش خودرو تحقیقات در این زمینه را ادامه می دهند این تحقیقات به تولید نمونه هایی در شرکتهای ایران خودرو و سایپا منجر شده که در نمایشگاههای خودرو به معرض دید عموم قرار گرفته است شرکت کیش خودرو نیز در حال ساخت خودرو برقی نمونه می باشد.
این پروژه به بررسی سیستم انتقال قدرت در خودروهای برقی و مقایسه آن با سیستم انتقال قدرت در خودروهای احتراق داخلی می پردازد.
فصل اول : خصوصیات خودروی برقی
در این فصل پس ازمعرفی و تعریف خودروی برقی و شرح مختصری در مورد تاریخچه خودرو برقی به بررسی مزیتهای این نوع خودرو می پردازیم ابتدا مزیت خودروی برقی از نظر نوع انرژی و سپس مزیت تجهیزات الکتریکی مورد استفاده و مشکلات موجود در خودروی برقی می پردازیم .
۱-۱- تعریف خودروی برقی
در یک خودروی برقی مجموعه محرک برقی آن وظیفه دارد جریان مستقیم تولید شده توسط باتری را به انرژی مکانیکی تبدیل نماید منظور از مجموعه محرک کلیه قطعاتی است که جریان مستقیم باتریها را به نیروی کششی و گشتاور لازم برای حرکت چرخها تبدیل می کنند مهمترین ویژگی خودروهای برقی عبارتند از : برد و قدرت حرکت (شتاب ، سرعت ، شیب روی و بارگیری و انعطاف پذیری ) و مدت شارژ و قیمت بالای باتریها ، در اغلب خودروهای برقی موجود مجموعه محرک تشکیل شده است از کنترلر (عضو تنظیم کننده) ، موتور الکتریکی ، جعبه دنده با نسبت کاهنده روی اکسل ها و جعبه تقسیم برای دو یا چهارچرخ ، راه حل های دیگر نیز بکار رفته اند بطور مثال دو موتور همراه با جعبه دنده و یا بدون جعبه دنده . مجموعه محرک باید خواسته های متعدد و متنوعی را برآورده کند که از آنها بعنوان معیار برای ارزیابی و مقایسه راه حل های مختلف استفاده می شود بطور مثال برخی از مهمترین این معیارها عبارتنداز :
– کاربری ساده
– راندمان بالا
– هزینه پایین
– اطمینان بالا
– عدم نیاز به سرویس و نگهداری
– وزن کم
– حجم ساختمانی کم
باید توجه داشت که نمی توان همه این معیارها را به خوبی در یک مجموعه محرک جمع نمود بطوریکه عموماً راندمان بالا با هزینه پایین متضادند علاوه براین بایستی توجه داشت که انواع خودروهای مختلف مراکز خواسته ها را تعریف می کنند بطور مثال در خودروی باری برقی حجم ساختمانی نقش کم اهمیت تری پیدا می کند.
۱-۲- تاریخچه تولید خودروی برقی و مزیت آن نسبت به خودرو احتراقی خودروی برقی از حدود سال ۱۹۰۰ میلادی تولید می شده است و تا سال ۱۹۱۵ روند تولید افزایش نسبتاً خوبی داشته است به دلیل مشکلاتی که موتورهای الکتریکی داشتند تولید خودرو برقی مورد استقبال قرار نگرفت اکتشافات جدید نفت و تولید فراوان آن همچنین پیشرفت چشمگیر موتورهای احتراق داخلی سالهای ۱۹۱۵ الی ۱۹۹۰ را در انحصار خودروهای با موتور احتراقی در آورد . بروز جنگهای جهانی ، جنگها و کشمکش هایی که نفت موضوع اصلی یا مورد استفاده آنها بود باعث شد که به ارزش واقعی این ماده پی برده شود و قیمت آن افزایش یابد اکنون که منابع جدید و قابل توجه نفت کشف نشده است و پیش بینی می شود ذخائر نفت به اتمام برسد، کشورهای صنعتی به استفاده از منابع دیگر انرژی ترغیب شده اند انرژی خورشیدی ، باد، سدهای آبی و انرژی هسته ای منابع جدید تأمین انرژی هستند و براحتی به انرژی الکتریکی تبدیل می شوند از سال ۱۹۹۰ تولید خودروی برقی مورد توجه قرار گرفت چون خودروها که یکی از منابع عمده مصرف انرژی هستند می توانند به مصرف انرژی هستند می توانند به مصرف کننده الکتریسیته تبدیل شوند با پیشرفت فن آوری ساخت موتورهای الکتریکی ، خودروهای برقی دارای مزیت نسبی نسبت به خودروهای معمولی شده اند در خودروهای برقی سیستم تأمین قدرت شامل یک موتور الکتریکی ، کنترلر ، باتریها و شارژر آن می باشد همه این تجهیزات پیشرفت چشمگیری داشته اند بطوریکه تعمیرات به حداقل می رسد خودرو معمولی شامل موتور احتراق داخلی با سیستم پیچیده ای است و تجهیزاتی به آن اضافه می شود. مانند :
۱- تجهیزات خروج و تصفیه دود شامل انباره ، اگزوز و …
۲- سیستم سرمایش موتور شامل رادیاتور، پمپ آب ، محفظه سرمایش ، ترموستات و سنسورها
۳- سیستم تولید جرقه شامل دلکو ، شمع ها و …
۴- سیستم سوخت رسانی شامل کاربراتور پمپ سوخت رسانی ، سیستم تزریق ، سوخت داخل سیلندر ، فیلترهای هوا و سوخت .
۵- سیستم مکانیکی موتور شامل میل لنگ ، پیستونها ، رینگهای آب بندی ، پمپ روغن ، چرخ زنجیر، واشرهای آب بندی و استارتر. این تجهیزات احتیاج به سرویس و تعمیرات مداوم دارند در حالیکه در خودرو برقی تجهیزات پیچیده ای وجود ندارد.
۱-۳- انواع موتورهای الکتریکی و مقایسه آنها
موتورهای الکتریکی دارای استاتور یا قسمت ساکن و روتور یا قسمت متحرک هستند موتورهای الکتریکی فقط دارای یک قسمت متحرک هستند در حالیکه موتورهای احتراقی قطعات متحرک زیادی دارند راندمان این موتورها بالاست و اغلب بیش از ۹۰% است انواع موتورهای الکتریکی را می توان در محدوده وسیع قدرت و در اندازه های مختلف و شکلهای مختلف از نوع dc یا ac طراحی کرد.
موتور الکتریکی وسیله مکانیکی است که انرژی مکانیکی را به حرکت تبدیل می نماید و این حرکت می تواند برای تولید کار ، کشیدن ، هل دادن ، بالا بردن ، تکان دادن یا ایجاد نوسان بکار رود.
موتور الکتریکی از قوانین کلاسیک و مغناطیس استفاده می نماید هر کدام از انواع موتورها دارای مشخصه های سرعت ، گشتاور و مشخصه برقی خاص هستند و برای استفاده در خودرو برقی دارای مزایا و معایبی می باشند انواع موتورهای برقی مناسب برای استفاده در خودرو برقی که به صورت انبوه تولید می شوند به طور اختصار معرفی می گردد.
۱-۳-۱- موتورهای الکتریکی جریان مستقیم
در این نوع موتورها جریان اصلی از کویل های هسته عبور می نماید و باعث چرخش هسته و ایجاد گشتاور در آن می گردد استاتور شامل قطب های آهن ربایی است هسته شامل شافت اصلی موتور و چند کویل است هر یک از کویل ها به کویل بعدی متصل است و جریان در کل آنها وجود دارد البته نوع اتصال کویل ها به یکدیگر خواص مختلفی ایجاد می نماید که انواع مختلف موتورهای dc را به وجود می آورد.
۱- سری
۲- شانت : در این نوع موتور به علت وجود کوماتاتور متحرک جریان در آرمیچر مرتباً تغییر جهت می دهد.
۳- ترکیبی : که ترکیب نوع ۱ و ۲ می باشد.
۴- با مغناطیس دائم
۵- بدون جاروبک
۶- جامع
مدار جریان در کویل انواع مختلف موتور dc و مشخصه های هر کدام از این نوع موتورها در شکل ۱-۱ ترسیم شده است.
موتورهای جریان مستقیم عموماً دارای مدار اینورتر ساده و ارزان با قابلیت بسیار بالا می باشند و سرعت موتور به راحتی قابل کنترل است وزن و حجم زیاد ، قیمت بالا پیچیدگی ساخت ، هزینه تعمیر و نگهداری بالا ، راندمان پائین و وجود جاروبک از معایب این موتورها می باشد در موتورها بدون نگهداری بالا ، راندمان پایین و وجود جاروبک از معایب این موتورها می باشد در نوع موتور بدون جاروبک که جاروبک وجود ندارد ، کنترل سرعت براحتی انجام می شود و موتور دارای دانسیته قدرت بالا می باشد این نوع موتور در سرعتها بالا کاربرد دارد حجم موتور کم و نویز نسبت به موتورهای دیگر کمتر می باشد عیب این نوع پیچیده بودن ساخت موتور و قیمت بالای آن است.
۱-۳-۲- موتورهای الکتریکی جریان متناوب
جریان ac خصوصیات خوبی دارد از جمله می تواند در ولتاژهای بالا به راحتی انتقال یابد و با وجود ترانسفورماتور تبدیل مقدار ولتاژ نیز به راحتی انجام می شود به علت در دسترس بودن این نوع موتور برای خودرو برقی نیز بیشتر استفاده می گردد.
مهمترین و پراستفاده ترین موتور ac ، موتور قفسه ای است در این نوع موتور که اساس آن مانند یک ترانسفورماتور متحرک است وجود جریان در سیم پیچ استاتور باعث القاء جریان در سیم پیچ هسته می شود بنابراین نیروهای حاصل از میدان جریان در هسته باعث چرخش آن و تولید گشتاور می شود.
مهمترین خصوصیات موتور القائی قفسه ای به شرح زیر است :
۱- هیچگونه جاروبک یا کوماتاتوری نیاز نمی باشد.
۲- دارای کمترین تعمیرات لازم است .
۳- مناسب باری کار در محیط های کثیف است .
۴- قابلیت اطمینان بالا دارد .
۵- راندمان بالا دارد.
۶- سختی و عمر بالا.
۷- هزینه ، وزن ، حجم و ممان اینرسی کم .
ذیلاً در مورد سه نوع موتور جریان متناوب که برای استفاده در خودروی برقی در نظر گرفته شده توضیحات بیشتری داده می شود.
۱- موتورهای سنکرون یا مغناطیس دائم
در این نوع موتور دانسیته قدرت بالا است به دلیل کنترل جریان و میدان استاتور، گشتاور بیشتری می توان تولید کرد جاروبک وجود ندارد و در سرعتهای بالا و محدوده وسیع سرعت قابل استفاده است .
۲- موتورهای القائی سه فاز
ساخت موتور ساده است این موتور سبک، مقاوم ، کم حجم ، ارزان و دارای راندمان بالا می باشد و نیازی به جاروبک ندارد البته برای کنترل سرعت باید از سیستم کنترل پیچیده ای استفاده نمود و این سیستم قیمت بالایی خواهد داشت.
۳- موتورهای شار محوری :
اخیراً موتورهای (Afm,Axial flux motor) یا موتورهای شار محوری نیز ساخته شده اند که دارای دو مدل استفاده از موتور در داخل چرخ خودرو (whell motor) و یا موتورهای با دو روتور و یک استاتور به صورتی که موتور به جای دیفرانسیل خودرو نصب می شود می باشند. البته دو موتور اخیر نیاز به فن آوری بالاتری برای ساخت و استفاده کردن داشته و قیمت بالاتری نیز دارند ولی بازده و عملکرد آنها بهتر از موتورهای القائی و PMSM معمولی می باشد دور موتور حداقل ۳۰۰۰ تا ۳۸۰۰ دور می باشد.
۱-۴- باتریهای قابل استفاده در خودرو برقی
ظرفیت و مقدار جریان دو فاکتور مشخصه باتریها هستند ظرفیت مقدار انرژی ذخیره شده در باتری است و به فاکتورهای زیادی وابسته هستند که مهمترین آنها عبارتند از:
۱- سطح یا اندازه فیزیکی صفحاتی که توسط اکترولیت پوشیده می شوند.
۲- وزن و مقدار مواد در صفحات
۳- تعداد صفحات و نوع جدا کننده بین آنها
۴- مقدار الکترولیت و جرم مخصوص آن
۵- سن باتری
۶- شرایط سلول – مقدار رسوب در ته سلول
۷- دما
۸- حد ولتاژ پایینی
۹- نرخ دشارژ
ظرفیت باتری برحسب آمپر- ساعت مشخص می شود جریان مشخصه دیگری باتری است و برحسب آمپر می باشد مقدار جریان تعیین کننده نرخ انرژی هنگام شارژ یا دشارژ می باشد بطور مثال برای یک باتری ۱۰۰ آمپر ساعت با جریان یک آمپر زمان دشارژ ۱۰۰ ساعت می شود و این باتری با جریان ۱۰۰/C مشخص می گردد.
شاید تنها ضعف خودرو برقی باتریهای آن باشد به علت چگالی کم انرژی ذخیره شده در باتری باید از تعداد زیادی باتری استفاده نمود که وزن خود را افزایش داده انرژی اضافه ای برای حمل این وزن مصرف می شود و مسافت پیموده شده در مقایسه با خودروهای احتراقی کمتر است همچنین شارژر این باتریها زمان برخواهد بود هزینه بالایی نیز صرف خرید باتریها خواهد شد اگر باتری های مناسبی برای خودرو ساخته شود که مشکلات فعلی را نداشته باشد یقیناً خودروهای با موتور احتراق داخلی کنار گذاشته می شوند.
انواع باتریهای شیمیایی ساخته می شوند از جمله باتریهای سرب اسیدی، نیکل کادمیوم، نیکل آهن ، نیکل منگنز ، سدیم سولفور و روی برم ، باتریهای سدیم سولفور بیشترین دانسیته انرژی حدود Wh/kg 150 را دارا می باشد اما قابل انفجار هستند باتریهای سرب اسیدی کمترین چگالی انرژی در حدود Wh/kg35 را دارا می باشند اما به علت عمر عملکرد خوب در حدود ۷۵۰ سیکل شارژ و قابلیت اطمینان بالا و قیمت مناسب بیشترین استفاده می شوند.
سیستم ذخیره انرژی الکتریکی :
در بلوک دیاگرام شکل زیر انواع مختلف سیستم های ذخیره انرژی الکتریکی نشان داده شده است در خودروهای برقی معمولاً از باتریهای شیمیایی استفاده می شود که در زیر پارامترها و مشخصات کلی مربوط به باتریهای مورد استفاده در خودرو برقی آورده شده است .
بلوک دیاگرام سیستم های ذخیرة انرژی
زمان شارژ کامل :
زمان شارژ برای باتریهای مختلف یکسان نبوده و به نوع باتری و نحوه شارژ بستگی دارد برای باتریهای سرب اسیدی ۴ تا ۸ ساعت li-ion حدود ۵ ساعت ، Nimh حدود ۸-۶ ساعت می باشد.
نوع شارژ
شارژ می تواند توسط دو روش Inductive یا Conductive انجام شود همچنین برق تغذیه کننده می تواند یک فاز یا سه فاز ایزوله باشد توان حدود KW6 و ولتاژ خروجی حداکثر V388 و جریان خروجی می تواند تا A15 باشد.
شارژ می تواند دارای دو mode آرام و سریع باشد مقاوم در مقابل رطوبت تا ۸۰% وزن ، kg6 ، حفاظت های ولتاژ ورودی و خروجی بصورت الکترونیکی و حفاظت جریان ورودی و خروجی بصورت بی متالی و الکترونیکی کلید IF و فاز بالانس ، حفاظت در مقابل اتصال کوتاه ، سیستم خنک شدن با هوا ، دارای سلف رگولاتور برای حذف هارمونیک ورودی محل نصب کنار صندوق عقب خودرو ساخت داخل قیمت یک شارژ معمولی سه فازه با حجم و وزن کم حدود نه میلیون ریال می باشد لازم به تذکر است که شارژرهای سوئیچینگ با ورودی برق تک فازه در خارج کشور طراحی شده است کار بر روی این شارژرها در ایران شروع شده و به نتیجه نهایی نرسیده است در هر حال یک شارژر سوئیچینگ با ورودی تک فازه و قدرت حدود ۶ کیلووات قیمت تولید انبوه آن نمی تواند بیش از ۵ میلیون ریال باشد.
مصرف برق در هر بار شارژر باتری ها
این میزان می تواند بسته به ظرفیت باتری ها و تعداد آنها و برد خورو و تلفات خودرو و غیره مقادیر مختلفی داشته باشد مثلاً در خودرو برقی پیکان با توجه به اینکه ظرفیت باتری برای ۲ ساعت دشارژ A-h,C2 و C2=36/7 و تعداد باتری ها ۲۸ عدد و ولتاژ هر یک ۱۲ می باشد میزان انرژی در هر دشارژ تا شارژ کامل برابر خواهد بود با
P=7/36 × ۱۲ × =۲۸ ۳۳/۱۲ Kwh
عمر باتریها
بسته به نوع باتری مورد استفاده در خودرو و مشخصات ارائه شده توسط کارخانه سازنده ، عمر باتریها متفاوت است بعنوان مثال در مورد باتریهای سرب اسیدی پوشیده در صورتی که هر دفعه تا نصف میزان انرژی دهی مجازش دشارژ و مجدداً شارژ گردد قادر است تا ۱۰۰۰ مرتبه و در صورتی که از کل انرژی دهی باتری استفاده شود تا ۵۰۰ مرتبه شارژ و دشارژ کار کند باتریهای انتخابی می تواند از نوع سرب اسیدی سیلد با ابعاد ۲۳۵×۱۴۰×۲۳۸ میلیمتر ، ۲۷ عدد باتری با ظرفیت A-h 48C2= وصل شده بصورت سری V324-12×۲۷ و با وزن کل Kg467=3/17×۲۷ می باشند جنس بدنه آنها پلاستیک ضد ضربه ساخت شرکت Sec با امکان ساخت داخل و محل نصب کاپوت جلو و صندوق عقب و در محل باک بنزین می باشد قیمت هر باتری حدود ۳۰۰۰۰۰۰ ریال می باشد البته با تولید انبوه به تعداد زیاد این قیمت می تواند تا ۲۰۰۰۰۰ ریال نیز کاهش یابد.


دانلود با لینک مستقیم


مقاله بررسی سیستم انتقال قدرت در خودروهای برقی و مقایسه آن با سیستم انتقال قدرت در خودروهای احتراق

مقدمه ای بر احتراق ذرات

اختصاصی از فایلکو مقدمه ای بر احتراق ذرات دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 60

 

مقدمه ای بر احتراق ذرات

مواد جامد بسیاری وجود دارند که قابلیت احتراق داشته و در صورتیکه شرایط محیطی صحبت اشتعال آن فراهم شود، شروع به سوختن می نمایند. این شرایط که در نهایت منجر به ایجاد یک جرقه می گردد تا حدود زیادی به طبیعت و ابعاد ذره جامد بستگی دارد. معمولاً قابلیت احتراق ذرات جامد با کاهش اندازه آنها به شدت افزایش می‌یابد به خصوص اگر ذرات جامد به شکل پودر و یا غبار درآیند که در اینصورت شرایط جهت احتراق به مراتب مساعدتر می گردد و در این حالت نه تنها سریع‌تر محترق گشته بلکه سرعت سوزش آنها نیز افزایش می یابد. دلیل این امر به میزان اکسیژن نفوذ کرده به داخل توده ذرات بر می گردد. در واقع در حالت فوق الذکر هوا یا اکسیژن راحت تر به درون توده ذرات نفوذ کرده و افت حرارتی سطح سوزش کمتر می تواند به داخل جسم رخنه کند.

هنگامی که فاصله بین ذرات زیاد می شود، زمینه مناسب جهت سوختن سریع مهیا می گردد، چرا که هوای کافی جهت احتراق، بین ذرات قرار می گیرد. حال اگر این پتانسیل بالا که در احتراق ذرات ریز جامد وجود دارد خارج از کنترل به فعالیت در آید می تواند باعث خطرات فاجعه آمیز و آسیب دیدگی اقرار شود. چرا که نرخ سریع سوزش ذرات بر روی تغییرات فشار اثر گذاشته و باعث گستردگی شعله می گردد.

ذراتی که در اکثر صنایع وجود دارد، قابل احتراق می باشند. این ذرات ممکن است مستقیماً ترمیم گردند و یا در در اثر سایر تولیدات صنایع بوجود آیند بعنوان مثال می‌توان از ذره آرد، شکر، ذرت، پلاستیک ها و فلزات زغالسنگ و مواد دارویی که مستقیماً در صنایع تولید می شوند نام برد.

از جمله ذرایت که به صورت ناخواسته و در هنگام تولیدات صنعتی بوجود می‌آیند، براده های چوب، کرک و منسوجات و انواع دیگر براده ها می باشد. در هر صورت همگی این ذرات قابلیت احتراق داشته و در صورت فراهم شدن شرایط اشتعال و یا انفجار بسیار خطرناک می باشند. این انفجارها معمولاً زمانی رخ می دهد که ذرات در هوا پراکنده می گردند و منبع جهت ایجاد جرقه وجود داشته باشد، در حالیکه آتش سوزی ذرات در حالات توده ای، لایه ای و غیره می تواند رخ دهد. ذکر این نکته ضروری است که سرعت انتشار انفجار ناشی از ذرات به قدری زیاد است که می توان گفت اگر انفجار رخ دهد تلاش در جهت خنثی کردن اثرات زیانبار آن بیهوده است.

به طور کلی مجموع مباحث موجود در احتراق ذرات ریز جامد را می توان در دو بحث عمده «تکنولوژی مدرن احتراق» و «پیشگیری و ایمنی» خلاصه نمود. امروزه احتراق ذرات ریز جامد به لحاظ تکنولوژی مدرن احتراق در صنایع نظامی و صنایع هوا فضا کاربردهای متنوع و متعددی دارد که از آن جمله می توان به استفاده از ذرات فلزی در سوخت موشکهای جامد سوز به منظور افزایش پایداری احتراق و افزایش راندمان احتراق اشاره نمود. در واقع ارزش سوخت جامد که تولید انرژی فراوان مشخصه بارز آن بوده زمانی نایابتر می گردد که محدودیت حجمی و وزنی وجود داشته باشد.

از طرفی وجود غبار ذرات در صنایع باعث ایجاد مشکلات عدیده ای می گردد که پیشتر تشریح شد. مطالب ذکر شده مبین این مطلب بوده که جهت جلوگیری از انفجارهای ناخواسته غبار ذرات در صنایع و استفاده بهینه از ذرات فلزی در موشکها، نیاز به فعالیتهای تحقیقاتی مناسب می باشد. در این راستا شناخت مکانیزم انتشار شعله ذرات ریز جامد در ابری از ذرات، هدف مطالعاتی بسیاری از محققین در این زمینه می‌باشد. برای شناخت این مکانیزم عمدتاً پارامترهایی نظیر سرعت سوزش و فاصله خاموشی مورد بررسی و مطالعه قرار می گیرد.

ضمناً ذکر این نکته ضروری است که در مبحث اشتعال و ذرات تعریف واحدی در خصوص عبارت ذره وجود نداشته و در عمل عبارت ذره و پودر بدون هیچ فرقی استفاده می گردند. برای اهداف موجود در این پایان نامه هر دو عبارت قابل استفاده بوده ولی در بیشتر موارد از عبارت ذره استفاده گردیده است. البته این نامگذاری را می‌توان براساس قطر انجام داد. بر طبق استاندارد انگلیسی، ذرات با قطر کمتر از یک میکرون را دور یا غبار و ذرات بزرگتر از یک میکرون را ذره و ذرات با ماکزیمم ابعاد کمتر از هزار میکرون را پودر می نامند.

1-2- تاریخچه احتراق

بیش از صد سال قبل، انفجار در معادن زغال سنگ تنها بواسطه وجود ذرات، پذیرفته شده بود. هنگامی قضیه احتراق ذرات از اهمیت بیشتری برخوردار شد که در سده اخیر انفجاراتی در صنایع بیشمار دیگری که ما ذرات سر و کار داشتند به وقوع پیوست و خطرات انفجار ذرات و نیاز به توجهات کافی در مورد آنرا یادآور شد. انفجارات مهم به ثبت رسیده در ایالات متحده و کانادا از سال 1860 میلادی شامل معادن زغال سنگ نشانگر خرابیهای فراوان به بار آمده در کارخانه ها و بناها می‌باشد. در انگلستان آماری از تعداد انفجارها و تلفات ناشی از آن ارائه گردیده است. ولی تعداد میانگین انفجار ذرات در این کشور در سالهای اخیر 2 تا 3 مورد در ماه گزارش گردیده است.

1-3- مروری بر ادبیات احتراق

جهت شناخت و بررسی رفتار احتراقی ذرات ریز جامد لازم است مفاهیم اولیه و پارامترهای احتراقی ذرات جامد نظیر انواع شعله ها، دمای آدیاباتیک شعله، سرعت انتشار، سرعت سوزش، شعله آرام، شعله آشفته و… مورد مطالعه قرار گیرد. در این بخش به ذکر مفاهیم و تعاریف موارد فوق الذکر می پردازیم.

1-3-1- انواع شعله های اساسی ]3[

در فرایندهای احتراق، سوخت و اکسید کننده مخلوط شده و می سوزند. احتراق را بر اساس زمان مخلوط شدن سوخت و اکسید کننده به دو دسته پیش آمیخته و غیر پیش آمیخته تقسیم می کنند. به آن دسته از شعله هایی که در آن سوخت و اکسید کننده پیش از احتراق مخلوط می شوند شعله پیش آمیخته و به آن دسته از شعله هایی که در آن فرایند احتراق و مخلوط شدن سوخت و اکسیدایزر به صورت همزمان رخ می‌دهد شعله غیر پیش


دانلود با لینک مستقیم


مقدمه ای بر احتراق ذرات

دانلود تحقیق کامل درباره احتراق

اختصاصی از فایلکو دانلود تحقیق کامل درباره احتراق دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 60

 

احتراق

4-1 اصول و قواعد کلی احتراق

واکنش های احتراق

اختراق به عنوان واکنش شیمیایی سریع اکسیژن در مقابل عناصر قابل اشتعالی از سوخت تعریف می شود سه عنصر شیمیایی قابل اشتعال در زغال و نفت وجود دارد که کربن هیدروژن و گوگرد می باشند.

معادلات شیمیایی اصلی برای یک احتراق کامل به شرح زیر می باشد:

 

 

 

(4-1 الف)

هنگامی که اکسیژن کافی موجود نباشد کربن بطور کامل نسوخته و به شکل مونوکسید کربن باقی می ماند.

مقدار کافی اکسیژن برای سوخت باید فراهم شود.

اکسیژن و سوخت نباید کاملاً با هم ترکیب شوند.

ترکیب سوخت و اکسیژن هوا باید در حدود یا بالاتر از دمای افروزش نگه داشته شود.

حجم کوره باید به اندازه ای باشد که به ترکیب حاصل فرصت احتراق داده و شرایط آن را فراهم سازد.

مشعل کوره باید به اندازه ای باشد که به ترکیب حاصل فرصت احتراق داده و شرایط آن را فراهم سازد.

مشعل کوره اکسیژن هوا را فراهم کرده و بمنظور فرایند احتراق عمل ترکیب انجام می گیرد. از آنجائیکه ترکیب کامل اکسیژن هوا و سوخت درواقع غیرممکن است به این منظور اکسیژن زیادی باید فراهم شود تا فرآیند احتراق کاملی رخ دهد. فرآیند ترکیب و میزان اکسیژن اضافی فراهم شده مشخص کننده این است که آیا گازهای مفر حاوی هر دو حاصل از احتراق کامل و غیر کامل خواهند بود. محصولات حاصل از احتراق ناقص شامل سوخت مشتعل شنده(نسوخته) = مونوکسیدکربن و مقدارکمی از سوخت تر کیب شده با اکسیژن می باشد اکثر محصولات حاصل از احتراق ناقص آلاینده های جوی می باشند.

میزان گرمای سوخت( گرمای احتراق)

در فصل 3 به این موضوع اشاره شد که میزان گرمای سوخت از لحاظ مقدار یا میزان گرمای استاندارد احتراق آن برابر می باشد البته با اثری معکوس همچنین خاطر نشان کردیم که میزان گرمای مازوت ممکن است بطوردقیف تری از گرمای احتراق اجزای تشکیل دهنده بدست آید البته این امر در صورتی امکانپذیر است که ترکیب شیمیایی مشخص می شود( به جدول 4.3) مراجعه کنید. راههای برآورد میزان گرما از طریق علم مربوط به نوع مازوت یا گرانی( ثقل) ویژه آن مشخص شدند. میزان گرمای گاز طبیعی تقریباً از طریق گرمای ترکیبات شیمیایی آن مشخص می شود.

در بخش 3.4 نشان دادیم که چگونه میزان گرمای تقریبی زغال ممکن است بر مبنای درجه آن بدست آید. هنگامی که تحلیل نهایی مشخص می شود میزان گرما برای احتراق کامل ممکن است به طور دقیق از طریق معادله دولانگ- برتلوت] معادله (3.9) [ بدست می آید بویژه در مسائلی از جمله احتراق ناقص زغال مطلوب است که میزان گرمای زغال مستقیماً از گرمای احتراق اجزای تشکیل دهنده آن بدست می آید. گرمای احتراق برای اجزای تشکیل دهنده اصلی زغال در جدول 1.4 نشن داده شده است. اگرچه گرمای آزادشده در حین سوخت کربن و تبدل آن به منوکسیدکربن(CO ) در جدول 1.4 نشان داده شده اما براحتی و به واسطه تفاوت میان گرمای احتراق کربن و مونوکسیدکربن درج شده در جدول 1.4 قابل تشخیص می باشد.

در محاسبه و بررسی سوخت خوجود برای احتراق از طریق تجریه نهایی زغال بطورکلی فرضیه حاصل می شود که تمام کربن و گوگرد به شکل عنصری و بمنظور احتراق موجود می باشد. با وجود این تمامی اکسیژن و نیتروژنی که ازتجزیه نهایی گزارش شده با هیدروژن ترکیب می شوند. کل هیدروژن موجود برای احتراق کمتر از میزان مورد نیاز جهت ترکیب با اکسیژن و نیتروژن موجود درذغال گرازش شده که به ترتیب و می باشند با توجه به کلیه فرضیات و در صورتی که تمام کربن نسوخته و به مونوکسید کربن تبدیل شود از گرمای احتراق درج شد و در جدول 4-1 برای معرفی معادله ای جدید که به فرمول دولانگ – برتلود بسیار نزدیک می باشد می توان استفاده نمود.

برای 1 گرم(g) زغال حاودی کربن گرمای آزادشده و از طریق احتراق کربن در موقعیت استاندارد به شرح زیر می باشد.

به همین نحو برای گوگرد( هنگامی که گوگرد w/o می باشد)

با وجود این چنانچه از هیدروژن و اکسیژن برخوردار باشیم هیدروژن موجود می باشد بدینوسیله:

مقادیر و بواسطه وزن کربن، هیدروژن، اکسیژن و گوگرد درصدی می باشند.

نسبت هوا به سوخت از لحاظ نظری

اکسیژن مربوط به منظور فرآینداحتراق بواسسطه اکسیژن موجود در هوا برای مشعل فراهم می شود. با توحه به طرح کوره دیگ بخار، فراهم نمودن اکسیژن کافی برای احتراق کامل به انضمام اکسیژن اضافی بمنظور فرایند ناقص ترکیب جریانی عادی می باشد. برای هر سوخت ولهای هوای خشک که از لحاظ نظری برای احتراق کامل لازم می باشد از طریق مولهای اکسیژن مورد نیاز مشخص می شوند. برای سوختی که حاوی کربن، هیدروژن و گوگرد باشد ممکن است معادله شیمیایی متعادلی به شرح زیر ارائه شود:


دانلود با لینک مستقیم


دانلود تحقیق کامل درباره احتراق