فایلکو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

فایلکو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

مقایسه کنترلر PID و LQR در سیستم LFC((کنترل کننده فرکانس بار)) با استفاده از الگوریتم بهینه سازی پناهجو

اختصاصی از فایلکو مقایسه کنترلر PID و LQR در سیستم LFC((کنترل کننده فرکانس بار)) با استفاده از الگوریتم بهینه سازی پناهجو دانلود با لینک مستقیم و پر سرعت .

در این پروژه با طراحی کنترل کننده ای جهت کنترل فرکانس در شبکه دو ناحیه ای سیستم قدرت با استفاده از کنترلر LQR ومقایسه ان با کنترلر PID طراحی شده بابهره گیری از الگوریتم پناهجو پرداخته ایم. فایل مورد نظر شامل گزارش کامل پروژه و فایل متلب میباشد. 


دانلود با لینک مستقیم


مقایسه کنترلر PID و LQR در سیستم LFC((کنترل کننده فرکانس بار)) با استفاده از الگوریتم بهینه سازی پناهجو

پایان نامه ارشد برق طراحی کنترلر با ساختار LQR برای یک سیستم صنعتی با تاکید بر محاسبه ماتریس های Q و R به روش GA

اختصاصی از فایلکو پایان نامه ارشد برق طراحی کنترلر با ساختار LQR برای یک سیستم صنعتی با تاکید بر محاسبه ماتریس های Q و R به روش GA دانلود با لینک مستقیم و پر سرعت .

پایان نامه ارشد برق طراحی کنترلر با ساختار LQR برای یک سیستم صنعتی با تاکید بر محاسبه ماتریس های Q و R به روش GA


پایان نامه ارشد برق طراحی کنترلر با ساختار LQR برای یک سیستم صنعتی با تاکید بر محاسبه ماتریس های Q و R به روش GA

 

 

 

 

 

 

 

چکیده

پروسس های صنعتی عموما سیستم های چند ورودی – چند خروجی هستند که عملکردی غیرخطی دارند. برای بیان کردن تکنیک های تنظیم کننده های مربعی خطی که مبنی بر استفاده از حالت های سیستم است نیاز به خطی سازی معادلات دینامیکی سیستم دارد. پس از این مرحله دو موضوع بهینه سازی در زمان محدود و بهینه سازی در زمان نامحدود مطرح می شود که هریک کاربردهای خاص خود را دارد.

در این پروژه فرض می شود که دینامیک سیستم خیلی کند نیست و می توان حالت زمان نامحدود را برای آن پیش برد. در این حالت ارائه ماتریس های Q و R در عملکرد سیستم نقش بسزایی دارد. هرچند روش هایی برای تخمین اولیه این ضرائب وجود دارد ولی همگی روش های تجربی هستند که ممکن است برای همه مسائل صنعتی کاربرد نداشته باشد.

در این پروژه تاکید بر تخمین مناسب Q و R با استفاده از الگوریتم های ژنتیک است.

مقدمه

با توجه به مشکلات طراحی ماتریس های وزنی برای LQR، راهکاری مبتنی بر یک الگوریتم تکامل تدریجی چند منظوره پیشنهاد می گردد. ماتریس های وزن دهی LQR کنترل فیدبک حالت و کنترل کننده بهینه از طریق بنا کردن مدل بهینه سازی با اهداف چند منظوره و با استفاده از MOEA به دست می آید که موجب می شود سیستم کنترلی ساخته شده به صورت همزمان به معیارهای عملکرد درخواست شده نائل گردد. مدل بهینه سازی با اهداف چند منظوره که تابع اول شامل تابع هزینه با استفاده از انحراف دامنه از حالت پایدار و اندازه مقدار کنترل و تابع دوم نرم خروجی سیستم است. کنترلر برای سیستم پاندول معکوس دوبل با استفاده از روش پیشنهاد شده طراحی شده است. نتایج شبیه سازی نشان می دهد که زمان خیز و اورشوت کوچکتر از روش طراحی ماتریس وزن دهی LQR در جایابی و تعیین قطب ها و همچنین روش NSGA II ارائه شده، دارد. روش پیشنهادی با استفاده از نرم افزار MATLAB شبیه سازی شده است و با روش NSGA II مقایسه شده است. بنابراین صحت روش ارائه شده مورد تائید قرار می گیرد.

فصل اول

سیستم های کنترل بهینه خطی

1-1- مقدمه

در طراحی سیستم های کنترل فیدبک حالت و رؤیتگر، قطب های حلقه بسته در مکان های مطلوب جایابی می شوند. همچنین، با انتخاب مناسب بهره رؤیتگر قطب های آن انتخاب می گردند. سرعت پاسخ و دینامیک خطای تخمین، با انتخاب قطب های حلقه بسته تعیین می شود. اما انتخاب مناسب و بهینه این قطب ها برای سیستم های صنعتی و فرآیندهای واقعی دشوار است. بنابراین، در این بخش سیستم های کنترل بهینه خطی ارائه می گردد. گرچه با فیدبک حالت می توان سیستم ناپایدار را پایدار کرد و قطب ها را در هر نقطه صفحه s قرار داد، ولی به دلایلی بررسی بیشتر و مطالعه سیستم های کنترل بهینه خطی ضروری به نظر می رسد.

نخست آنکه، تعیین مکان قطب های حلقه بسته در توصیف رفتار مطلوب مورد نظر طراح بسیار مهم و امری دشوار است. انتخاب موقعیت قطب های حلقه بسته دور از مبدا، سریع تر شدن پاسخ دینامیکی سیستم را به همراه دارد. اما با سریع تر کردن پاسخ (دورتر کردن قطب های حلقه بسته سیستم از مبدا) سیگنال های کنترل بزرگ شده و عموما محرک های سیستم قادر به اجرای فرامین کنترلی نخواهند بود. اگر قطب های حلقه بسته به گونه ای جایابی گردند که باعث تجاوز سیگنال های کنترل از حدهای فیزیکی شوند یا به عبارت دیگر اشباع گردند، رفتار دینامیکی حلقه بسته مشابه رفتار پیش بینی شده با تحلیل خطی نبوده و حتی ممکن است که رفتار حلقه بسته سیستم واقعی ناپایدار گردد. دلیل دیگری که برای محدود کردن سرعت پاسخ وجود دارد، مسئله نویز است که معمولا با سیستم های بهره بالا همراه است. با انتخاب بهینه قطب های حلقه بسته، می توان به سرعت دلخواه حلقه بسته و اندازه قابل قبول سیگنال کنترلی دست یافت.

همچنین، در سیستم های چند ورودی و چند خروجی روش جایابی قطب با فیدبک حالت، ماتریس بهره فیدبک حالت خاصی را تعیین نمی کند. در واقع، این ماتریس نا یکتا است. در اینجا این سؤال مطرح خواهد شد که از کدام بهره برای جایابی قطب استفاده گردد و از چه الگوریتمی برای تعیین بهره های فیدبک می توان استفاده کرد؟ از کنترل بهینه، می توان برای تعیین ماتریس فیدبک حالت در سیستم های چند متغیره استفاده کرد.

تعداد صفحه : 96

 


دانلود با لینک مستقیم


پایان نامه ارشد برق طراحی کنترلر با ساختار LQR برای یک سیستم صنعتی با تاکید بر محاسبه ماتریس های Q و R به روش GA

طراحی کنترل کننده LQR برای سیستم های غیرخطی و بررسی عوامل غیرخطی در عملکرد آن

اختصاصی از فایلکو طراحی کنترل کننده LQR برای سیستم های غیرخطی و بررسی عوامل غیرخطی در عملکرد آن دانلود با لینک مستقیم و پر سرعت .

طراحی کنترل کننده LQR برای سیستم های غیرخطی و بررسی عوامل غیرخطی در عملکرد آن


 طراحی کنترل کننده LQR برای سیستم های غیرخطی و بررسی عوامل غیرخطی در عملکرد آن

 

 

 

 

 

 

 

چکیده

در این پژوهش ابتدا میزان مطلوبیت عملکرد کنترل کننده LQR برای فرایند CSTR در نقاط کار مختلف توسط معیار PSM (اندازه گیری حساسیت عملکرد) محاسبه می شود، سپس با شبیه سازی سیستم حلقه بسته در نقاط کار مختلف، نتایج به دست آمده، تائید می شود و در مرحله بعد، برای یک نقطه کار مشخص با تغییر ضرایب وزنی LQR، تغییرات PSM بررسی می شود. نقطه کمینه PSM به ازای تغییرات نسبت ضرایب وزنی محاسبه شده و نشان داده می شود که برخلاف انتظار عملکرد LQR در این نقطه به هیچ عنوان مطلوب نبوده بلکه با کوچک شدن بردار بهره پسخور سیستم به صورت حلقه باز عمل می کند. برای بررسی نتایج PSM با تغییرات نسبت ضرایب وزنی، معیاری به نام فاصله نسبی (Dr) تعریف می شود. این معیار که مستقیما با شبیه سازی حلقه بسته به دست می آید، با تغییرات نسبت ضرایب وزنی محاسبه شده و با مقایسه نتایج به دست آمده با تغییرات PSM به ازای تغییرات نسبت ضرایب وزنی عدم کارایی معیار PSM با تغییرات ضرایب وزن در کنترل کننده LQR به خوبی نشان داده شده است.

مقدمه

کنترل سیستم های خطی به طور وسیع بررسی شده و مجموعه ای از ابزارها، برای تحلیل، فرابینی، بهینه سازی و کنترل آنها، به خوبی مشخص شده است. به این منظور، فرایند کنترل مهندسی با متمرکز کردن بر سیستم خطی، حل دامنه وسیعی از مسائل کنترلی را ارائه می دهد. متاسفانه، حقیقت این است که فرایندهای محدودی خطی هستند، و از اینرو تاثیر استفاده از استراتژی کنترل خطی باید تحقیق شده باشد. استراتژی کنترل غیرخطی پیشرفت عظیمی داشته و پذیرش بیشتری شده. هرچند پیاده سازی آنها توسط درجه مهمی از سفسطه ریاضی یا نیاز محاسباتی ممانعت شده است. از اینرو تقریب های خطی محلی سیستم غیرخطی، اغلب برای گسترش دادن قانون کنترل به کار می رود. به منظور آزمایش تاثیر این نگرش، یک شاخص از اندازه گیری تاثیر فرایند غیرخطی در عملکرد کنترل خطی ارائه می شود.

با توجه به مطالب بیان شده، پیدا کردن روش هایی که بتوان به واسطه آن، از صحت عملکرد کنترل کننده خطی، اطمینان حاصل کرد، حایز اهمیت است. همچنین افزایش صحت عملکرد کنترل کننده های خطی برای سیستم های غیرخطی جزء روش های جذاب تحقیق می باشد.

در این پژوهش قصد داریم براساس کارهای جدید انجام شده در مورد کنترل کننده های LQR روشی ارائه دهیم که در آن پارامترهای آزاد این کنترل کننده به قسمی طراحی می شوند که اثر نامطلوب غیرخطی بودن سیستم بروی فرایند کنترل کاهش یابد.

در فصل اول، هدف از پژوهش و پیشینه تحقیق، همراه با روش کار و تحقیق بیان شده است. در فصل دوم، روش LQR و کاربرد آن در سیستم های غیرخطی معرفی شده است، در فصل سوم، روش LQR با استفاده از معیار PSM برای یک سیستم حقیقی (CSTR) شبیه سازی شده و معیار جدیدی به نام Dr(Relative Distance معرفی می شود، در فصل چهارم نتایج شبیه سازی ارائه شده و در فصل پنجم نتایج و پیشنهادات برای ادامه کار بررسی می شود.

فصل اول: کلیات

موضوع کنترل غیرخطی تحلیل و طراحی سیستم های کنترل غیرخطی را بررسی می کند. به طور مثال، سیستم های کنترل غیرخطی ای که حداقل یک مولفه غیرخطی دارند. در تحلیل فرض می شود که سیستم حلقه بسته غیرخطی طراحی شده است، و مایلیم مشخصات رفتاری این سیستم را تعیین کنیم. در طراحی فرض بر این است که یک سیستم غیرخطی را بایستی کنترل کنیم که برخی از مشخصات رفتار سیستم حلقه بسته آن را داده اند و از ما می خواهند که کنترل کننده ایی بسازیم که سیستم حلقه بسته مطلوب را داشته باشد. در عمل، البته موضوع های طراحی و تحلیل بهم وابسته اند، زیرا در طراحی سیستم کنترل غیرخطی معمولا ضروری است که از فرایند تکراری تحلیل و طراحی استفاده کنیم.

2-1 چرا کنترل غیرخطی؟

کنترل غیرخطی موضوعی جا افتاده با روش های متنوع و توانا و تاریخی طولانی در کاربردهای موفق صنعتی است. بنابراین، طبیعی است تعجب کنیم چرا این همه محقق و طراح در زمینه های مختلف چون کنترل هواپیما و فضاپیما، روباتیک، کنترل فرایند و مهندسی زیست پزشکی به تازگی علاقه جدی نسبت به توسعه و کاربرد روش های کنترل غیرخطی نشان داده اند. دلایل متعددی را برای چنین علاقمندی می توان ارائه داد.

1-2-1- اصلاح سیستم های کنترل موجود

روش های کنترل خطی بر پایه فرض اصلی عملکرد در محدوده کوچک برای مدل خطی بنا نهاده شده است. هنگامی که محدوده عملکرد مورد نیاز وسیع است، کنترل کننده خطی محتملا عملکرد ضعیفی و یا ناپایدار دارد، زیرا اثرات غیرخطی قادر است به طور مستقیم اثرات غیرخطی در دامنه وسیع را پاسخگو باشد. این نکته به سادگی در مسائل کنترل حرکت ربات نمایش داده می شود. زمانی که کنترل کننده خطی برای حرکت ربات به کار گرفته می شود، نیروهای غیرخطی وابسته به حرکت بازوهای ربات را نادیده می گیرد. بنابراین دقت کنترل کننده به شدت با افزایش سرعت حرکت کم می شود، زیرا بسیاری از نیروهای دینامیکی نظیر نیروهای کوریولیس و مرکزگرا، با مجذور سرعت تغییر می یابند. در نتیجه برای حصول دقت لازم از قبل تعیین شده در عملکردهای ربات نظیر برداشتن و گذاردن، جوشکاری قوسی و برش لیزری، لازم است سرعت ربات و در نتیجه میزان تولید را پایین نگه داریم.

2-2-1- تحلیل غیرخطی های سخت

فرض دیگر کنترل خطی آن است که مدل سیستم واقعا قابل خطی سازی باشد. در حالی که در سیستم های کنترل عوامل غیرخطی بسیاری وجود دارد که طبیعت ناپیوسته آنها اجازه تقریب خطی را به ما نمی دهد. این موارد به اصطلاح “عوامل غیرخطی سخت” مشتمل بر اصطکاک کولومبی، اشباع، ناحیه مرده، لقی و پسماند، غالبا در مهندسی کنترل یافت می شوند. اثرات این ها را نمی توان با روش های خطی به دست آورد و باید تکنیک های تحلیل غیرخطی به کار برده شود تا بر آن مبنا بتوان عملکرد سیستم را در حضور این عوامل غیرخطی ذاتی پیش بینی نمود. از قبیل ناپایداری و یا چرخه های حدی کاذب که آثار این ها هم پیش بینی و هم به طور مناسب جبران می شوند.

تعداد صفحه : 145

 

 

 


دانلود با لینک مستقیم


طراحی کنترل کننده LQR برای سیستم های غیرخطی و بررسی عوامل غیرخطی در عملکرد آن