فایلکو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

فایلکو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

پایان نامه ارتقای روش های مختلف پیش بینی فشاربخار مواد مختلف

اختصاصی از فایلکو پایان نامه ارتقای روش های مختلف پیش بینی فشاربخار مواد مختلف دانلود با لینک مستقیم و پر سرعت .

پایان نامه ارتقای روش های مختلف پیش بینی فشاربخار مواد مختلف


پایان نامه ارتقای روش های مختلف پیش بینی فشاربخار مواد مختلف

 

 

 

 

 

 

 


فرمت فایل : WORD (قابل ویرایش)

تعداد صفحات:96

پایان نامه مقطع کارشناسی ارشد
رشته : مهندسی شیمی

فهرست مطالب:
صفحه    عنوان
فصـل اول : مقدمه وکلیات تحقیق    1
1-1-مقدمه    2
1-2-تعریف فشار بخار    2
   1-3--عوامل مؤثر برفشار بخار    3
1-3-1-ماهیت مایع    3
1-3-2-دمای مایع    3
1-4-بیان مسأله    3
1-5-توجیه ضرورت انجام تحقیق    4
1-6-اهداف تحقیق    4
1-7-مراحل انجام تحقیق    4
1-8-ساختار تحقیق    5
فصل دوم:ادبیات و پیشینه تحقیق    7
2-1-مقدمه    8
2-2-روابط ریاضی تخمین وپیش بینی فشاربخار مواد مختلف    9
2-2-1-معادله کلازیوس-کلاپیرون    9
2-2-2-معادله آنتوان    10
2-2-2-1-محدودیت های معادله آنتوان    10
2-2-3-معادله آنتوان توسعه یافته    10
2-2-4-معادله واگنر    11
2-2-4-1-محدودیت های معادله واگنر    12
2-2-5-رابطه حالتهای متناظر ریدل    12
2-2-6-معادله لی-کسلر    14
2-2-6-1-محدودیت های رابطه لی-کسلر    15
2-2-7-معادله فشاربخار آمبروز-پاتل    15
2-2-7-1-ملاحظات معادله آمبروز-پاتل    16
2-2-8-روش حالتهای متناظر آمبروز-والتون    16
2-3-اهمیت روش های نوین پیش بینی و تخمین خواص مواد    17
2-4-پیشینه روش شبکه های عصبی در تخمین خواص ترمودینامیکی    18
2-5-پیش بینی فشاربخار مواد با استفاده از شبکه عصبی مصنوعی    19
فصل سوم: روش تحقیق    21
3-1-مقدمه    22
3-2-تاریخچه پیدایش شبکه های عصبی مصنوعی    22
3-3-ویژگی های شبکه های عصبی مصنوعی    24
3-3-1-قابلیت آموزش    24
3-3-2-قابلیت تعمیم    24
3-3-3-پردازش توزیعی(موازی)    24
3-3-4-تحمل پذیری خطا    25
3-4-ساختار شبکه‌ها‌ی عصبی مصنوعی    25
3-4-1-مدل نرون با یک ورودی    25
3-4-2- مدل نرون با یک بردار به عنوان ورودی    26
3-4-3-ساختار یک لایه از شبکه های عصبی    27
3-4-4-شبکه های چندلایه    27
3-4-5-توابع انتقال    28
3-4-5-1-تابع انتقال سخت محدود    29
3-4-5-2-تابع انتقال خطی    29
3-4-5-3-تابع انتقال لگاریتمی سیگموئید    30
3-4-5-4-تابع انتقال شعاع مبنا    30
3-4-5-5-تابع انتقال آستانه ای خطی متقارن    31
3-4-5-6-تابع انتقال تانژانت-سیگموئید    31
3-5-روش های آموزش شبکه عصبی    32
3-6-قواعد یادگیری شبکه های عصبی    32
3-6-1-قواعد یادگیری نظارت شده    32
3-6-2-قواعد یادگیری غیرنظارتی    33
3-7- شبکه های عصبی پرسپترون    33
3-7-1-محدودیت های شبکه پرسپترون    34
3-8- شبکه های عصبی پیشخور    35
3-9-الگوریتم پس انتشار خطا    36
3-10-آموزش شبکه های پس انتشار    37
3-11-بیش برازش شبکه    37
3-12-بهبود عمومیت شبکه    38
3-13-پارامترهای اساسی برای طراحی یک شبکه عصبی    39
3-13-1-انتخاب مناسب ترین اطلاعات ورودی به شبکه    39
3-13-2-نحوه ورود داده ها    39
3-13-3-تقسیم بندی داده ها    39
3-13-4-انتخاب مناسب ترین تعداد نرون های لایه پنهان    40
3-12-معیارهای ارزیابی کارایی مدل    40
3-12-نرم افزار استفاده شده در این تحقیق    41
فصل 4: محاسبات و یافته های تحقیق    42
4-1-مقدمه    43
4-2-طراحی شبکه عصبی مصنوعی برای هیدروکربن های آروماتیکی    43
4-3- طراحی شبکه عصبی مصنوعی برای آلکان ها و آلکن ها    52
4-4- طراحی شبکه عصبی مصنوعی برای الکل ها     .6
4-5- طراحی شبکه عصبی مصنوعی برای آلکیل سیکلو هگزان ها    68
فصل پنجم: نتیجه گیری و پیشنهادها    77
5-1-نتیجه گیری    78
5-2-پیشنهادات برای تحقیقات آتی    79
مراجع    80
چکیده انگلیسی    86

فهرست جداول
عنوان    صفحه
جدول 4- 1: مشخصات داده های تجربی درنظرگرفته شده برای هیدروکربن های آروماتیکی    44
جدول 4- 2بررسی خطاوضریب تعیین ساختار مختلف شبکه های عصبی برای هیدروکربن های آروماتیکی    46
جدول 4- 3: مقایسه خطای مطلق میانگین روابط متعارف پیش بینی فشاربخار و روش شبکه عصبی برای هیدروکربن های آروماتیکی    51
جدول 4- 4: خلاصه شبکه عصبی طراحی شده برای گروه هیدروکربن های آروماتیکی    52
جدول 4- 5: مشخصات داده های تجربی درنظرگرفته شده برای آلکان ها و آلکن ها    53
جدول 4- 6: بررسی میزان خط و ضریب تعیین ساختار مختلف شبکه های عصبی برای آلکان ها و آلکن ها    54
جدول 4- 7: مقایسه خطای مطلق میانگین روابط متعارف پیش بینی فشاربخار و روش شبکه عصبی برای آلکان ها و آلکن ها    59
جدول 4-8: خلاصه شبکه عصبی طراحی شده برای گروه آلکان ها و آلکن ها    60
جدول 4- 9: مشخصات داده های تجربی درنظرگرفته شده برای الکل ها    61
جدول 4- 10: بررسی میزان خطا وضریب تعیین ساختار مختلف شبکه های عصبی برای الکل ها    62
جدول 4- 11: مقایسه خطای مطلق میانگین روابط متعارف پیش بینی فشاربخار و روش شبکه عصبی برای الکل ها    67
جدول 4- 12: خلاصه شبکه عصبی طراحی شده برای گروه الکل ها    68
جدول 4- 13: مشخصات داده های تجربی درنظرگرفته شده برای آلکیل سیکلوهگزان ها    69
جدول 4- 14: بررسی میزان خطا وضریب تعیین ساختارمختلف شبکه های عصبی برای آلکیل سیکلوهگزان ها    70
جدول 4- 15: مقایسه خطای مطلق میانگین روابط متعارف پیش بینی فشاربخار و روش شبکه عصبی برای آلکیل سیکلو هگزان ها    75
 جدول 4- 16: خلاصه شبکه عصبی طراحی شده برای گروه آلکیل سیکلو هگزان ها    76

فهرست شکل¬ها
عنوان    صفحه
شکل 3- 1: نمایی از مدل نرون تک ورودی    26
شکل 3- 2:مدل نرون با R ورودی    27
شکل 3- 3:یک لایه از شبکه های عصبی    27
شکل 3- 4: مدل خلاصه شده شبکه تک لایه    27
شکل 3- 5: مدل شبکه های چند لایه    28
شکل 3- 6: تابع انتقال سخت محدود    29
شکل 3- 7: تابع انتقال خطی    29
شکل 3- 8: تابع انتقال لگاریتمی سیگموئید    30
شکل 3- 9: تابع انتقال شعاع مبنا    30
شکل 3- 10: تابع انتقال آستانه ای خطی متقارن    31
شکل 3- 11:تابع انتقال تانژانت-سیگموئید    31
شکل 3- 12:یک نرون پرسپترون    34
شکل 4- 1: تغییرات میزان خطای مطلق میانگین با افزایش نرون در لایه پنهان برای  هیدروکربن های آروماتیکی    47
شکل 4- 2: ساختار بهینه شبکه عصبی برای هیدروکربن های آروماتیکی    47
شکل 4- 3: خطای مربعات میانگین شبکه در مراحل آموزش، ارزیابی و تست برای هیدروکربن های آروماتیکی    48
شکل 4- 4: فشاربخار محاسبه شده توسط شبکه عصبی(output) در مقایسه با داده های فشاربخار تجربی(target) در مرحله آموزش برای هیدروکربن های آروماتیکی    49
شکل 4- 5: فشاربخار محاسبه شده توسط شبکه عصبی(output) در مقایسه با داده های فشاربخار تجربی(target) در مرحله ارزیابی برای هیدروکربن های آروماتیکی    49
شکل 4- 6: فشاربخار محاسبه شده توسط شبکه عصبی(output) در مقایسه با داده های فشاربخار تجربی(target) در مرحله تست برای هیدروکربن های آروماتیکی    50
شکل 4- 7: فشاربخار محاسبه شده توسط شبکه عصبی(output) در مقایسه با داده های فشاربخار تجربی(target) در کل مراحل برای هیدروکربن های آروماتیکی    50
شکل 4- 8: تغییرات میزان خطای مطلق میانگین با افزایش نرون در لایه پنهان برای آلکان ها و آلکن ها    55
شکل 4- 9: ساختار بهینه شبکه عصبی برای آلکان ها و آلکن ها    55
شکل 4- 10: خطای مربعات میانگین شبکه در مراحل آموزش،ارزیابی و تست برای آلکان ها و آلکن ها    56
شکل 4- 11: فشاربخار محاسبه شده توسط شبکه عصبی(output) در مقایسه با داده های فشاربخار تجربی(target) در مرحله آموزش برای آلکان ها و آلکن ها    57
شکل 4-12: فشاربخار محاسبه شده توسط شبکه عصبی(output) در مقایسه با داده های فشاربخار تجربی(target) در مرحله ارزیابی برای آلکان ها و آلکن ها    57
شکل 4- 13: فشاربخار محاسبه شده توسط شبکه عصبی(output) در مقایسه با داده های فشاربخار تجربی(target) در مرحله تست برای آلکان ها و آلکن ها    58
شکل 4- 14: فشاربخار محاسبه شده توسط شبکه عصبی(output) در مقایسه با داده های فشاربخار تجربی(target) در کل مراحل برای آلکان ها و آلکن ها    58
شکل 4- 15: تغییرات میزان خطای مطلق میانگین با افزایش نرون در لایه پنهان برای الکل ها    63
شکل 4- 16: ساختار بهینه شبکه عصبی برای الکل ها    63
شکل 4- 17: خطای مربعات میانگین شبکه در مراحل آموزش،ارزیابی و تست برای الکل ها    64
شکل 4- 18: فشاربخار محاسبه شده توسط شبکه عصبی(output) در مقایسه با داده های فشاربخار تجربی(target) در مرحله آموزش برای الکل ها    65
شکل 4- 19: فشاربخار محاسبه شده توسط شبکه عصبی(output) در مقایسه با داده های فشاربخار تجربی(target) در مرحله ارزیابی برای الکل ها    65
شکل 4- 20: فشاربخار محاسبه شده توسط شبکه عصبی(output) در مقایسه با داده های فشاربخار تجربی(target) در مرحله تست برای الکل ها    66
شکل 4- 21: فشاربخار محاسبه شده توسط شبکه عصبی(output) در مقایسه با داده های فشاربخار تجربی(target) در کل مراحل برای الکل ها    66
شکل 4- 22: تغییرات میزان خطای مطلق میانگین با افزایش نرون در لایه پنهان برای آلکیل سیکلوهگزان ها    71
شکل 4- 23: ساختار بهینه شبکه عصبی برای آلکیل سیکلوهگزان ها    71
شکل 4- 24: خطای مربعات میانگین شبکه در مراحل آموزش،ارزیابی و تست برای آلکیل سیکلوهگزان ها    72
شکل 4- 25: فشاربخار محاسبه شده توسط شبکه عصبی(output) در مقایسه با داده های فشاربخار تجربی(target) در مرحله آموزش برای آلکیل سیکلوهگزان ها    73
شکل 4- 26: فشاربخار محاسبه شده توسط شبکه عصبی(output) در مقایسه با داده های فشاربخار تجربی(target) در مرحله ارزیابی برای آلکیل سیکلوهگزان ها    73
شکل 4- 27: فشاربخار محاسبه شده توسط شبکه عصبی(output) در مقایسه با داده های فشاربخار تجربی(target) در مرحله تست برای آلکیل سیکلوهگزان ها    74
شکل 4- 28: فشاربخار محاسبه شده توسط شبکه عصبی(output) در مقایسه با داده های فشاربخار تجربی(target) در کل مراحل برای آلکیل سیکلوهگزان ها    74

 

 

چکیده
فشار بخار یک خاصیت ترمودینامیکی مهم در طراحی تجهیزات فرایندی و عملیات واحد مهندسی شیمی است. از این رو،داده های فشاربخار تجربی که تمام محدوده فشار بخار را پوشش دهند خیلی ارزشمند هستند اما به دلیل فقدان اندازه گیری های دقیق برای فشاربخار برخی از مواد در نزدیکی نقطه سه گانه و بحرانی،  معادله هایی که قادر به پیش بینی فشاربخار در چنین شرایطی باشند بسیار حائز اهمیت می باشنداما به دلیل شرایط ومحدودیت های موجود در بسیاری از روابط موجود، استفاده از روش های جدیدی که به دور از این محدودیت ها باشند ،توصیه می گردد.یکی از روش های عددی که در سالهای اخیر جایگاه خاصی در محاسبات مهندسی شیمی پیدا کرده است، روش محاسبه بر اساس شبکه های عصبی می باشد.در این پژوهش، با استفاده از روش شبکه های عصبی مصنوعی، مدلی برای پیش بینی فشار بخار مواد مختلف ارائه شد.در کارحاضر،از 4 گروه از مواد شامل هیدروکربن های آروماتیکی،آلکان ها و آلکن ها، الکل ها و آلکیل سیکلوهگزان ها استفاده شد.مناسب ترین نوع شبکه عصبی مصنوعی برای پیش بینی فشاربخار این مواد، یک شبکه سه لایه پیشخور با الگوریتم پس انتشارخطا می باشد که در آن از تابع انتقال تانژانت سیگموئید در لایه پنهان و تابع انتقال خطی در لایه خروجی بهره گرفته شده است . پارامترهای ورودی شبکه عبارتند از: دما، دمای بحرانی، فشاربحرانی و ضریب بی مرکزی. داده های مورد نیاز جهت آموزش وتست شبکه از مقادیرمعتبر آزمایشگاهی گردآوری شدند.میزان خطای روش شبکه عصبی با مقادیر خطای حاصل از روش ها ی مختلف تخمین فشاربخار مقایسه شد. نتایج شبیه سازی نشان می دهند که روش شبکه عصبی توانسته پیش بینی دقیقی از فشاربخار مواد ارائه دهد و از دقت بالاتری نسبت به سایر روش ها برخوردار است.

کلمات کلیدی: فشار بخار، مدل سازی، پیش بینی خواص ترمودینامیکی، روش های هوشمند


دانلود با لینک مستقیم


دانلود پایان نامه عمران درمورد آنالیز و طراحی اعضای خمشی پیش تنیده

اختصاصی از فایلکو دانلود پایان نامه عمران درمورد آنالیز و طراحی اعضای خمشی پیش تنیده دانلود با لینک مستقیم و پر سرعت .

دانلود پایان نامه عمران درمورد آنالیز و طراحی اعضای خمشی پیش تنیده


دانلود پایان نامه عمران درمورد آنالیز و طراحی اعضای خمشی پیش تنیده

آنالیز و طراحی اعضای خمشی پیش تنیده

 

 

 

 

 

 

لینک پرداخت و دانلود *پایین مطلب*

فرمت فایل:Word (قابل ویرایش و آماده پرینت)

تعداد صفحه:69

چکیده :

قبل از پیدایش تکنیک پیش تنیدگی، پل های بتن آرمه تنها برای پوشش دادن به دهانه های نسبتاً کوتاهی بکار برده می شدند. محدودیت طول دهانه در این پل ها دارای دو عامل اساسی بوده است. زیرا اولا برای دهانه های بلندتر حجم مصالح مصرفی(بتن و فولاد) بسرعت افزوده می گردد. بطوریکه بار مرده سازه خود یک عامل بحرانی در طراحی مقطع محسوب خواهد شد، ثانیاً هزینه های مربوط به قالب بندی و شمعک گذاری چنین عرشه هائی مقادیر بسیار بزرگی را بخود اختصاص خواهد داد. با توجه به دو عامل یاد شده، معمولا راه حل دیگر یعنی استفاده از شاهتریهای فولادی ترجیح داده می شد.

با ابداع شیوه پیش تنیدگی و بکارگیری آن در صنعت پلسازی، تا حدود زیادی مشکل مربوط به اقتصاد مصالح مصرفی برطرف گردید. استفاده از این تکنیک منجر به پیدایش مقاطع ظریف تری شد و با کاهش بار مرد‌ه عرشه امکان پوشش دادن به دهانه های بلندتری فراهم گردید. اما متاسفانه مشکل دوم یعنی هزینه های بسیار بالای مربوط به قالب بندی و چوب بست های مورد نیاز در اجرای چنین پل هائی بقوت خود باقی ماند، بطوریکه در دهانه های بلند قسمت بزرگی از هزینه ها به فاکتورهای یاد شده اختصاص داشته است. استفاده از شاهتیرهای پیش ساخته پیش تنیده هم نتوانست این مشکل را برطرف نماید زیرا محدودیت های مربوط به طول قطعات در هنگام حمل، امکان استفاده از چنین قطعاتی را در دهانه های بلند منتفی می نمود. از طرف دیگر حمل و نقل و نصب چنین شاهتیرهائی نیاز به استفاده از ابزارهای ویژه و گران قیمتی را بوجود می آورد.

امروزه پل های صندوقه ای قطعه ای پس کشیده در سرتاسر جهان مورد استقبال واقع شده اند و با بکارگیری این شیوه دهانه هائی با طور بیش از 250 متر پوشش داده شده اند. این پل ها ضمن بکارگیری مزایای بتن پیش تنیده، راه حل سریع و کم هزینه ای برای پوشش دادن به دهانه های بلند می باشند.

برخی از مزایای این قبلی پل ها عبارتند از:

1- کاهش ابعاد مقطع و در نتیجه کاهش بار مرده عرشه بواسطه بکارگیری پیش تنیدگی؛

2- افزایش راندمان مقطع بواسطه ترک نخوردن آن و قابلیت آن در تحمل لنگرهای خشمی با علامات مثبت یا منفی؛

3- سختی نسبتا زیاد مقاطع صندوقه ای در مقابل پیچش؛

4- سرعت زیاد و هزینه نسبی کم برای پوشش دادن به دهانه های بلند؛

5- عدم نیاز به چوب بست ها در هنگام عبور از موانع طبیعی نظیر درها یا رودخانه ها، و یا موانوع مصنوعی نظیر شاهراه های پرتردد؛

6- امکان بکارگیری تکنیک پیش ساختگی در پروژه های بزرگ و یا تکراری

با توجه به مطالب فوق، بررسی ضوابط طراحی و اصول اجرایی پل های پس تنیده همواره مورد توجه آیین نامه های معتبر کشورهای صنعتی قرار گرفته است و هر کدام به تناسب شرایط اقلیمی و ارکانی استانداردهای خاصی را تدوین کرده و در بخش جداگانه ای ارائه کرده اند. آیین نامه آشتوآمریکا که در پل سازی دارای پیشینه ای دور و دراز می باشد در فصل نهم به بتن پیش تنیده در پل سازی پرداخته است که در ادامه خواهد آمد. همچنین آیین نامه های کهن و معروف دیگر از جمله آیین نامه انگلستان با نام BSI، آیین نامه اروپا با نام EUROCODE و آیین نامه آلمان (DIN) و ... نیز فصول معینی که این مهم آورده اند که از این بین ما دو آیین نامه پرکاربرد و قدیمی آشتو و BSI انگلستان را برای مقایسه و بررسی فنی انتخاب نموده ایم، که در فصول دهم و یازدهم متون ترجمه شده این دو آیین نامه با سیستم MKS در این مجمل آورده شده است که امید می رود مورد استفاده دانشجویان و اساتید گرانقدر قرار گیرد

پیش تنیدگی چیست؟

امرزه با بکارگیری مصالح پرمقاومت و همچنین استفاده از شیوه های نوین طراحی، سازه های اقتصادی تری طراحی و اجرا شده است. استفاده از مصالح پرمقاومت موجب کاهش مقطع عرضی اعضا و متعاقب آن کاهش کلی بار مرده سازه های شده است. این پیشرفت خصوصاً در مورد سازه های بتن مسلح چشمگیرتر بوده است، زیرا در طراحی این گونه اعضا بار مرده قسمت عمده ای از بارهای طراحی را تشکیل می دهد. در برخی سازه های خاص اهمیت کاهش ابعاد مقطع بمراتب بیشتر می باشد، برای مثال در پل های دهانه بلند این مطلب حائز اهمیت زیادی است، در چنین پل هائی بار مرده عرشه لنگرهای بزرگتری را در مقایسه با بارهای طراحی ایجاد می نماید؛ همچنین قسمت عمده بار وارد بر پایه ها و فونداسیون ها ناشی از وزن روسازه می باشد. استفاده از بتن های با مقاومت فشاری بالا و همچنین فولادهای پرمقاومت موجب طراحی اعضای بتن آرمه ظریف تری شده است، با این وجود محدودیتهائی در استفاده از این پیشرفتهای جدید موجود می باشد که قسمت عمده آن ناشی از مسئله ارتباط متقابل بین ایجاد ترک در اعضاء بتن آرمه و خیز آنها در مرحله بهره برداری می باشد. با توجه به رفتار اعضای بتن آرمه، راندمان استفاده از فولادهای پرمقاومت محدود می باشد زیرا تنش در این فولاد متناسب با توزیع کرنش کلی موجود در مقطع بوده و افزایش کرنش ها در مقطع با افزایش دامنه و عرض ترک ها همراه خواهد بود. این ترک ها از دو جنبه مطلوب نمی باشند، اول آنکه در محیط هائی که بتن در مجاورت عوامل فرسایش دنهده شیمیائی است وجود ترک ها موجب خوردگی شدید آرماتورها خواهد گردید. از جنبه دیگر گسترش ترک ها کاهش سختی خمش عضو را بدنبال داشته و خیز عضو را خواهد افزود. چنین اعضائی از نظر سرویس دهی، مطلوب نخواهند بود.

این ویژگیهای نامطلوب در اعضای بتن آرمه معمولی، با ابداع شیوه پیش تنیدگی اصلاح شده است. یک عضو پیش تنیده بتن آرمه عضوی است که تنش هائی از قبل در آن قرار داده شده باشد، این تنش ها در تمامی طول عمر عضو با آن همراه است. فلسفه این تنش های از پیش قرار داده شده، مقابله یا مخالفت با تنش های ناشی از بارهای بهره برداری و حتی المقدور خنثی کردن اثر آنها می باشد. بتن ماهیاتاً عضوی فشاری است و می توان مقاومت کششی آن را ناچیز دانسته و از آن صرفنظر نمود، پیش تنیدگی در واقع عضو را تحت نوعی فشار اولیه قرار می دهد، بصورتیکه نتیجه آن کاهش تنش های کششی در مقطع به حد مجاز و یا اساساً حذف آنها خواهد بود. بدین صورت ترک خوردگی تحت بارهای بهره برداری منتفی خواهد گردید. برای روشن تر شدن مفهوم پیش تنیدگی، عضو خمشی موجود در شکل (2-1 الف) را مورد توجه قرار می دهیم. در کنار این عضو مقطع آن ترسیم شده و مرکز سطح در حالت ترک نخورده با C.G.C نمایش داده شده است. Wt در این شکل مشخص کننده مجموع بارهای اعمالی به عضو بوده و شامل اجزای زیر است:

Wg= بار مرده خالص تیر

Wd= بار مرده اضافی (بعنوان مثال در عرشه های بتن آرمه وزن روسازی، جداول و پیاده روها جزء Wd محسوب می شوند)

Wl= بارهای زنده

(2-1) Wt=Wg+Wd+Wl

با اعمال Wt عضو تغییر شکل داده و در تارهای پائین مقاطع آن تنش کششی ایجاد خواهد گردید. با توجه به ضعف بتن در مقابل کشش و بمنظور جلوگیری از گسترش ترک های خمشی، در اعضای بتن آرمه معمولی در ترازی نزدیک به تارهای پائینی مقطع فولادهائی قرار داده می شود. تنش موجود در این فولادها متناسب با کرنش موجود در مقطع می باشد، نیروی کششی موجود در فولادها با نیروی فشاری تحمل شده توسط بتن در هر مقطع برابر می باشد. این دو نیرو لنگر مقاوم داخلی را تولید می نمایند. که در برابر لنگر ناشی از بارهای خارجی مقاومت خواهد نمود. لنگر ناشی از بارهای خارجی Wt در شکل (2-1 ب) ترسیم شده است. هر اندازه طول دهانه بزرگتر باشد لنگر حاصل از بارهای خارجی نیز بزرگتر خواهد خواهد بود که برای جبران آن باید اساس مقطع و همچنین مقدار فولادهای کششی را افزود، اما برای دهانه های بسیار بزرگ و مقادیر زیاد Wt این شیوه دیگر جبران کننده نخواهد بود، زیرا اولا با افزایش اساس مقطع، Wg نیز افزوده خواهد شد و بنابراین Wt نیز مقدار بزرگتری را بدست خواهد آورد، ثانیاً همانگونه که ذکر شد تنش های موجود در فولادها متناسب با کرنش بتن هم تراز آنها می باشد، بنابراین برای وصول نیروی کششی بیشتر در فولادها ترک ها باید در عضو گسترش یابند که این امر خود موجب افزایش خیز عضو خواهد گردید.

بجای استفاده از این سیستم می توان از ایده دیگری کمک گرفت. در شکل (2-1 پ) همان عضو تحت اثر دو نیروی فشاری با مقادیری برابر P قرار گرفته است. این دو نیرو در ترازی بفاصله e از مرکز سطح مقطع عضو به آن وارد می شوند. در شکل (2-1 ت) دیاگرام لنگر حاصل از این نیروها ترسیم شده است، که مقدار آن در تمامی نقاط ثابت و برابر –P.e می باشد. بنابراین هر گاه عضو تحت اثر مشترک بارگذاری های موجود در شکل های (2-1 الف) و (2-1 پ) قرار داشته باشد دیاگرام لنگر خمشی حاصل مطابق شکل (2-1 ث) خواهد بود. در این حالت همانگونه که مشاهده می گردد اثر بار اعمالی Wt توسط بارگذاری دیگر تخفیف داده شده است. در چنین حالتی دیگر مقطع وسط دهانه لزوما از نظر طراحی بحرانی نخواهد بود.

برای درک بهتر اثرات بارگذاری موجود در شکل (2-1 پ)، مقطعی از عضو را بفاصله X از تکیه گاه آن مطابق شکل (2-2 الف) در نظر می گیریم، در این شکل توزیع تنش کلی موجود در مقطع ترسیم شده است که می توان آن را مجموع توزیع های ناشی از نیروهای خارج از مرکز P و بارهای اعمالی Wt دانست. توزیع های ناشی از این دو بارگذاری بترتیب در شکل های (2-2 ب) و (2-2 پ) آمده است.

توزیع تنش کلی در مقطع مورد بررسی به محل مقطع، مقدار P و خروج از مرکزیت e بستگی دارد و می توان دو کمیت آخر را چنان تنظیم نمود که در هیچ مقطع از عضو تنش های کششی ایجاد نگردد. بارگذاری موجود در شکل (2-1 پ) در واقع بیان ساده ای از یک عضو پیش تنیده بانیروی پیش تنیدگی P و خروج از مرکزیت ثابت e می باشد. با توجه به موارد فوق چنین می توان نتیجه گرفت که پیش تنیدگی در حقیقت قرار دادن تنش های داخلی در عضو بوده بنحوی که این تنش ها اثر بارهای خارجی را تخفیف دهند. شیوه های مختلف پیش تنیدگی، انتخاب مسیر مناسب برای آن و نیروی مورد نیاز مسائلی هستند که در بخشهای آینده روشن تر خواهند گردید.

چنین بنظر می رسد که نخستین پیشنهادها برای پیش تنیدگی در بین سالهای 1886 تا 1908 توسط P.H.Jackson و G.R.Steiner آمریکائی، J.Koenen آلمانی، صورت پذیرفته باشد. استفاده از فولادهای با مقاومت بالا نخستین بار در سال 1923 توسط F. von Emperger اطریشی پیشنهاد گردید و تقریباً در همان زمان R.H.Dill آمریکائی پیش تنیدگی کامل را بمنظور حذف ترک ها ارائه نمود. این پیشنهادها غالباً تنها بر روی کاغذ باقی ماندند، اولین اقدامات عملی برای ایجاد یک سازه بتنی پیش تنیده عمدتاً توسط E.Freyssinet و Y.Guyon فرانسوی، E.Hoyer آلمانی و G.Magnel بلژیکی صورت پذیرفتند. اولین پل پیش تنیده بتنی در سال 1941 در فرانسه بر روی رودخانه مارن اجرا گردید. این پل با دهانه 54 متر از کارهای Freyssinet بوده و نام او را در این صنعت جاودان ساخته است.

3- فولاد و بتن مورد مصرف در صنعت پیش تنیدگی

تاندون های[1] پیش تنیدگی می توانند متشکل از سیم ها[2]، کابل ها[3] و یا میلگردها[4] باشند. در صنعت پیش تنیدگی کابل های 7- سیمه متداول تر بوده و مشخصات آنها مطابق با استانداردهای ASTM A416 می باشد. در گذشته کابل های تنش زدائی شده (Stress-Relieved)، در مقیاس وسیعی بکار برده می شدند؛ اما امروزه کابل های با وادادگی اندک(Low-Relaxation)، شیوع فراوان تری یافته اند. مزیت استفاده از کابل های نوع اخیر پایین تر بودن اتلاف های ناشی از وادادگی[5] می باشد، برای(روشن شدن این مفهوم به بخش (7-2) مراجعه شود).

میلگردها و سیم های پیش تنیدگی کمتر بعنوان فولادهای اصلی در اعضای پیش تنیده بکار برده می شوند و مشخصات آنها را می توان در استانداردهای ASTM A421 و ASTM A722 جستجو نمود. در جداول (3-1) تا (3-6) مشخصات فولادهای پیش تنیدگی آمده است.

بخش نهم از آئین نامه جدید پلسازی آمریکا (AASHTO-89)، ضوابط بتن پیش تنیده مورد مصرف در پلسازی را بطور کامل بیان نموده است. در بند (9-3-1) از این آئین نامه، قید شده است که فولادهای مورد مصرف باید از یکی از استانداردهای زیر تبعیت نمایند:

- سیم های تنش زدائی شده، مطابق با: AASHTO M204

- کابل های 7- سیمه تنش زدائی شده، مطابق با: AASHTO M203

- میلگردهای پرمقاومت، مطابق با: ASTM A722

فولادهای پیش تنیدگی که در سه گروه فوق جای نگیرند تنها در صورتی می توانند استفاده شوند که حداقل های موجود در هر گروه را دارا باشند.

بتن مورد استفاده برای سازه های پیش تنیده اصولاً، دارای مقاومت فشاری بالاتری نسبت به اعضای بتن آرمه معمولی می باشد. حدود مقاومت فشاری برای نمونه 28 روزه استوانه ای استاندارد ASTM برای اعضای پیش تنیده در حدود 280 تا 560 kg/cm2 است، در صورتیکه برای اعضای معمولی بتن آرمه حدود این مقاومت مشخصه، در محدوده 210 تا 280 kg/cm2 می باشد. استفاده از بتن با مقاومت بالا در اعضای پیش تنیده می تواند دارای مزایای مختلفی باشد. که برخی از آنها به قرار زیر است:

1- عمده ترین مزیت بتن پیش تنیده پوشش دادن به دهانه های بزرگ می باشد، در چنین دهانه هائی بار مرده بخش عمده ای از بارهای طراحی را تشکیل می دهد. با بکارگیری مقاومت بالاتر می توان اعضای ظریف تری طراحی نموده و به طرح اقتصادی تری دست یافت.

2- در اعضای پس کشیده در محل مهاری های تاندون ها، تنش های لهیدگی در زیر صفحات مهاری بسیار بالا می باشد. برای جبران این مسئله باید سطح صفحات مهاری را افزود و یا مقاومت عضو را بالاتر بدست آورد، بعلت موارد ذکر شده در بند قبل معمولا راه حل دوم انتخاب می گردد.

و...

NikoFile


دانلود با لینک مستقیم


دانلود مقاله ISI سری زمانی نامشخص در پیش بینی آب و هوا

اختصاصی از فایلکو دانلود مقاله ISI سری زمانی نامشخص در پیش بینی آب و هوا دانلود با لینک مستقیم و پر سرعت .

موضوع فارسی :  سری زمانی نامشخص در پیش بینی آب و هوا

موضوع انگلیسی : Uncertain Time Series in Weather Prediction

تعداد صفحه : 8

فرمت فایل :pdf

سال انتشار : 2013

زبان مقاله : انگلیسی

چکیده

بررسی مقاله در مورد روش ها بر داده های سری زمانی نامشخص در پیش بینی آب و هوا اجرا شده است. هدف
تجزیه و تحلیل سری های زمانی نامشخص است به تدوین و فرموله کردن اطلاعات غیر قطعی به منظور به دست آوردن دانش، مناسب مدل های بعدی پایین، و انجام
پیش بینی. فاصله اقلیدسی، ذرات بهینه سازی ازدحام، داده کاوی، و شبیه سازی مونت کارلو روش های است که بوده است
در مقایسه با بررسی بهترین راه پیش بینی. این روش از سال 1900s زود اجرا شده است. این کاغذ
مورد بحث در عملکرد هر روش.

کلمات کلیدی: سری زمانی نامشخص؛ سری زمانی؛ هوش مصنوعی؛ هوا


دانلود با لینک مستقیم


دانلود مقاله با موضوع بتن پیش تنیده ، کاربرد و اجرای آن

اختصاصی از فایلکو دانلود مقاله با موضوع بتن پیش تنیده ، کاربرد و اجرای آن دانلود با لینک مستقیم و پر سرعت .

دانلود مقاله با موضوع بتن پیش تنیده ، کاربرد و اجرای آن


دانلود مقاله با موضوع بتن پیش تنیده ، کاربرد و اجرای آن

دانلود مقاله با موضوع بتن پیش تنیده ، کاربرد و اجرای آن که شامل 12 صفحه و بشرح زیر میباشد:

نوع فایل : Word

فهرست محتوا 

 مقدمه

پیش تنیدگی عبارت از ایجاد تنش داخلی در یک جسم است تا تنشی را که به علت تأثیر نیروهای خارجی به وجود می آید به مقدار مورد نیاز خنثی کند یا به عبارت دیگر پیش تنیدگی به معنای ایجاد تنش های دائمی مخالف با تنش هایی می باشد که در اثر بارهای خدمت در سازه ایجاد خواهند شد.  عمده ترین کاربرد پیش تنیدگی در بتن پیش تنیده است .

بتن ، که یکی از ارزانترین و عملی ترین مصالح ساختمانی است ، مقاومت خوبی در برابر فشار دارد و تاب کششی کمی از خود نشان می دهد . بنابراین در ناحیه ای از بتن ، که بعد از بارگذاری  تحت  کشش  قرار  می گیرد  ،  قبلاً  ایجاد  فشار  می کنند . این عمل ، به اصطلاح« پیش تنیدن بتن » نامیده میشود .

 بر اساس «  آیین نامة ACI 318 – 95   »  بتن  پیش تنیده  عبارت  است  از  بتن  سازه ای ( ساختمانی ) که جهت کاهش تنش های کششی بالقوه حاصل از بارها ، در آن تنش های داخلی ایجاد شده است .هدف اصلی از پیش تنیده کردن یک عضو بتنی محدود کردن تنشهای کششی و ترکهای ناشی از لنگر خمشی تحت تأثیر بارهای وارده در آن عضو می باشد …… 

تاریخچه 

مقایسة بتن پیش تنیده با بتن آرمه 

مزایا و معایب بتن پیش تنیده

مزایا :

معایب : 

مصالح در بتن پیش تنیده

الف) بتن :

ب) فولاد :      

مفتول ها :

کابل ها :

میلگردهای آلیاژدار : 

خوردگی فولاد پیش تنیده 

روشهای پیش تنیدگی 

مراحل اجرایی تیرهای پیش کشیده و پس کشیده

تیرهای پیش کشیده

تیرهای پس کشیده 

طرق اجرای سازه های بتن پیش تنیده

الف) بتن ریزی در محل :

ب) تیرهای پیش ساخته : 

ج) اجرای ساختمان به روش طره ای : 

موارد استفاده از بتن پیش تنیده

1ـ پل سازی :

2ـ مخازن مایعات :

3ـ لوله های آبیاری :

4ـ ساختمانهای در یایی :

5ـ فرودگاه ها : 

  استفاده در یک پروژة خاص ( برج میلاد )

ـ پس کشیدگی در پی برج مخابراتی تهران 

جدول 1 ـ مشخصات مفتول ها طبق استاندارد  ASTM-A421 

جدول 2 ـ مشخصات کابل 7 مفتولی طبق استاندارد  ASTM-A416 

جدول 3ـ مشخصات میلگردهای آلیاژ دار طبق استاندارد  ASTM-A722 

مراجع : 

 

ویژه ی رشته های عمران، معماری ، راه و ساختمان و .......

*هدف ما راحتی شماست*


دانلود با لینک مستقیم


پایان نامه کارشناسی ارشد مهندسی معدن پیش بینی خردایش سنگ ناشی از انفجار در معدن مس سر چشمه با استفاده از شبکه عصبی

اختصاصی از فایلکو پایان نامه کارشناسی ارشد مهندسی معدن پیش بینی خردایش سنگ ناشی از انفجار در معدن مس سر چشمه با استفاده از شبکه عصبی دانلود با لینک مستقیم و پر سرعت .

پایان نامه کارشناسی ارشد مهندسی معدن پیش بینی خردایش سنگ ناشی از انفجار در معدن مس سر چشمه با استفاده از شبکه عصبی


پایان نامه کارشناسی ارشد مهندسی معدن پیش بینی خردایش سنگ ناشی از انفجار در معدن مس سر چشمه با استفاده از...

دانلود پایان نامه کارشناسی ارشد مهندسی معدن پیش بینی خردایش سنگ ناشی از انفجار در معدن مس سر چشمه با استفاده از شبکه عصبی با فرمت pdf  تعداد صفحات 117

دانلود پایان نامه اماده

 

این پایان نامه جهت ارائه در مقطع کارشناسی ارشد رشته مهندسی معدن طراحی و تدوین گردیده است . و شامل کلیه مباحث مورد نیاز پایان نامه ارشد این رشته می باشد.نمونه های مشابه این عنوان با قیمت های بسیار بالایی در اینترنت به فروش می رسد.گروه تخصصی ما این پایان نامه را با قیمت ناچیزی جهت استفاده دانشجویان عزیز در رابطه با منبع اطلاعاتی در اختیار شما قرار می دهند. حق مالکیت معنوی این اثر مربوط به نگارنده است. و فقط جهت استفاده از منابع اطلاعاتی و بالابردن سطح علمی شما در این سایت ارائه گردیده است.   


دانلود با لینک مستقیم