فایلکو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

فایلکو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

جدوال انتخاب کنتاکتور بیمتال فیوز برای موتورهائی که به طور ستاره مثلث راه اندازی میشوند

اختصاصی از فایلکو جدوال انتخاب کنتاکتور بیمتال فیوز برای موتورهائی که به طور ستاره مثلث راه اندازی میشوند دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 11

 

جدوال انتخاب کنتاکتور بیمتال فیوز برای موتورهائی که به طور ستاره مثلث راه اندازی میشوندجدوال انتخاب کنتاکتور بیمتال فیوز برای موتورهائی که به طور ستاره مثلث راه اندازی میشوند

(دو ضرب) در ولتاژ 380

جریان فیوز

جریان بی متال

جریان کنتاکتور

HP

KW

16

7-10

12

10

7.5

20

10-13

12

13.5

10

25

13-18

16

15

11

32

13-18

16

20

15

40

18-25

25

25

18.5

50-63

23-32

40

30

22

63

30-40

40

40

30

80

38-50

63

50

37

100

48-57

63

60

45

125

57-66

63

75

55

160

75-105

125

100

75

200

95-125

125

125

90

جدول کیلو وات آمپر و فیوز الکتروموتور

فیوز

آمپر

کیلوات

2

0.8

0.25

4

1.2

0.37

4

1.8

0.55

4

2

0.75

4

2.6

1.1

6

3.5

1.5

10

5

2.2

16

6.6

3

20

8.5

4

25

11.5

5.5

35

15.5

11

35

22.5

15

50

30

1

63

36

8.5

63

43

22

80

57

30

100

72

37

125

85

45

160

104

55

200

142

75

225

169

90

250

204

110

300

243

132

355

292

180

جدوال انتخاب کنتاکتور بیمتال فیوز برای موتورهائی که به طور مستقیم راه اندازی میشوند

(تک ضرب) در ولتاژ 380

جریان فیوز

جریان بی متال

جریان کنتاکتور

HP

KW

2

1-1.6

9

0.5

0.37

4

1.6-2.5

9

0.75

.55

4

1.6-2.5

9

1

.75

6

2.5-4

9

1.5

1.1

6

2.5-4

9

2

1.5

8

4-6

9

3

2.2

12

4-6

9

4

3

12

7-10

16

5.5

4

16

10-13

16

7.5

5.5

20

13-15

16

10

7.5

25

18-25

25

13.5

10

25

18-25

25

15

11

40

23-32

40

20

15

40

30-40

40

25

18.5

63

38-50

63

30

22

63

48-57

63

40

30

80

66-80

80

50

37

100

75-105

125

60

45

125

95-125

125

75

55

160

120-160

200

100

75

200

150-200

200

125

90

250

160-250

260

150

110

250

200-315

260

175

132

315

250-400

450

220

160


دانلود با لینک مستقیم


جدوال انتخاب کنتاکتور بیمتال فیوز برای موتورهائی که به طور ستاره مثلث راه اندازی میشوند

مقاله درباره مثلث 9 ص

اختصاصی از فایلکو مقاله درباره مثلث 9 ص دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 9

 

مثلث

 

مثلث.

مثلث (سه‌گوش) شکلی مسطح است که از اتصال سه نقطه غیرهم‌خط در صفحه به وجود می‌آید. مثلث دارای سه ضلع و سه زاویه است.

مساحت مثلث

مساحت یک مثلث برابر یک دوم طول یک ضلع، ضرب در طول ارتفاع وارد بر آن، یعنی فاصله رأس سوم تا خط شامل ضلع انتخاب‌شده، است.

مساحت هر نوع مثلث بدون دانستن ارتفاع

فرض می‌کنیم a و b و c اضلاع یک مثلث از هر نوع داده شده باشد (خواه قائم الزاویه - متساوی الساقین - مختلف الاضلاع) فرمول زیر مساحت مثلث را یبان می‌کند :

if a+b+c=2p → s2=p(p-a)(p-b)(p-c)→ یعنی →

توان دوم مساحت مثلث از این فرمول یدست می‌آید با یک بار جذر گرفتن از آن مساحت مثلث را خواهیم داشت مرکز دایره محاطی محل برخورد عمود منصف های اضلاع مثلث است.

با دانستن خصوصیات بعضی از خطوط مانند ارتفاع یا عمود منصف و یا میانه میتوانیم به نتایج جالبی در مورد دست پیدا کنیم. برخی از این نتایج را بیان میکنیم: اگر بر سه ضلع مثلث خطوطی را عمود میکنیم به طوریکه این خطوط اضلاع را نصف نمایند.(در واقع عمود منصف اضلاع را رسم میکنیم)در این صورت محل برخورد این سه خط، مرکز دایره ای خواهد بود که مثلث را احاطه میکند . به این دایره، دایره محاطی گویند.این دایره طوری رسم میشود که از سه راس مثلث عبور کند. طبق قضیه فیثاغورث اگر مرکز دایره محاطی روی یکی از اضلاع قرار گیرد آنگاه زاویه مقابل آن ضلع قائم خواهد بود.به عبارتی دیگر مثلث ما قائم الزاویه خواهد بود. اگر مرکز دایره درون مثلث باشد ،مثلث ما یک مثلث حاده خواهد بود و اگر بیرون مثلث باشد، مثلث از نوع منفرجه خواهد بود. ارتفاع مثلث خط راستی است که از یک راس مثلث عبور کرده و بر ضلع مقابل آن راس عمود میشود.ضلعی را که ارتفاع بر آن عمود است را قاعده مثلث گویند.طول ارتفاع ، فاصله بین راس و قاعده نظیر ارتفاع است.اگر سه ارتفاع مثلث را رسم کنیم این سه ارتفاع همدیگر را در داخل مثلث قطع میکنند مگر در حالتی که مثلث ،منفرجه باشد.محل برخورد نیمسازهای مثلث مرکز دایره محیطی است.نیمساز یک زاویه از مثلث خط راستی است که از یک راس مثلث گذشته و آن زاویه را به دو قسمت مساوی تقسیم کند. اگر نیمسازهای سه زاویه مثلث را رسم کنیم این خطوط در نقطه ای درون مثلث همدیگر را قطع خواهند کرد.این نقطه مرکز دایره محیطی مثلث خواهد بود.این دایره درون مثلث قرار دارد به طوریکه اضلاع مثلث، خطوطی مماس بر دایره هستند.میانه یک مثلث خط راستی است که از راس مثلث گذشته و ضلع مقابل آن را به دو قسمت مساوی تقسیم میکند. سه میانه مثلث یکدیگر را در نقطه ای به نام مرکز مثلث قطع میکنند البته این نقطه مرکز ثقل مثلث نیز میباشدهمچنین این نقطه هر میانه مثلث را به نسبت 1 به 2 تقسیم میکند به طوریکه فاصله میان راس مثلث تا این نقطه دو برابر فاصله این نقطه تا نقطه میانی ضلع مقابل راس است.روابط بین ضلع ها در مثلث مجموع هر دو ضلع، بزرگتر از ضلع سوم است. در مثلث هر ضلع، بزرگتر از تفاضل بین دو ضلع دیگر است.روابط بین زوایا مجموع زاویه های داخلی مثلث 180 درجه است. مجموع زاویه های خارجی مثلث 360 درجه است. هر زاویه خارجی برابر مجموع دو زاویه داخلی مجاور آن است.روابط بین ضلع ها و زوایا در مثلث زاویه مقابل به ضلع بزرگتر از زاویه مقابل به ضلع کوچکتر بزرگتر است. ضلع مقابل به زاویه بزرگتر از ضلع مقابل به زاویه کوچکتر بزرگتر است. زوایای مقابل به اضلاع برابر برابرند و برعکس. هر مثلث متساوی الساقین متقارین است. عمود از رأس به قاعده مثلث متساوی الساقین قاعده و زاویه رأس آن را نصف می کند. زوایای قاعده مثلث متساوی الستقین برابرند. در مثلث قائم الزاویه زوایای حاده متمم اند. در مثلث قائم الزاویه متساوی الساقین، زوایای قاعده 45 درجه اند. در مثلث متساوی الاضلاع تمام زوایای داخلی برابرند، هر یک 60 درجه است. مثلثهای متساوی الاضلاع سه محور تقارن دارند. اگر یکی از زوایای مثلث قائم الزاویه ای 30 درجه باشد، ضلع مقابه به آن نصف وتر است.مساحت مثلث = ( قاعده × ارتــــــفاع ) ÷ 2 محیط مثلث = مجموع سه ضلع علم مثلثات بر اساس روابط موجود در مثلث قائم الزاویه تعریف و در علوم مختلف مهندسی بکاربرده میشود.

مثلث متساوی‌الاضلاع

از ویکی‌پدیا، دانشنامهٔ آزاد

مثلث متساوی‌الاضلاع

مثلث متساوی‌الاضلاع یک چندضلعی منتظم است.

ضلع‌ها و نقطه‌ها

۳

نمادهای شلافی

{۳}

نمودار کوکستر–دینکین

گروه متقارن

دوسطحی (D۳)

زاویه داخلی(درجه

°۶۰

مثلث متساوی الاضلاع یا سه‌پهلوبرابر در هندسه به مثلثی گفته می‌شود که سه ضلع آن برابر باشند.

ویژگی‌ها

با فرضِ این‌که درازای اضلاع مثلث متساوی‌الاضلاع باشد، خواهیم داشت:

مساحت:

محیط:

شعاع دایرهٔ محیطی:

شعاع دایرهٔ محاطی:

و ارتفاع: .

این روابط را می‌توان از قضیه فیثاغورس نتیجه گرفت.

یک مثلث متساوی‌الاضلاع ۳ خطّ تقارن دارد.

دایره

پرش به: ناوبری, جستجو

برای دیگر کاربردهای نام دایره به صفحهٔ دایره (ابهام‌زدایی) مراجعه کنید.


دانلود با لینک مستقیم


مقاله درباره مثلث 9 ص

پاورپوینت درباره قوانین مهم مثلثات در مثلث و برخی روابط مثلثاتی در مثلث

اختصاصی از فایلکو پاورپوینت درباره قوانین مهم مثلثات در مثلث و برخی روابط مثلثاتی در مثلث دانلود با لینک مستقیم و پر سرعت .

پاورپوینت درباره قوانین مهم مثلثات در مثلث و برخی روابط مثلثاتی در مثلث


پاورپوینت درباره قوانین مهم مثلثات در مثلث و برخی روابط مثلثاتی در مثلث

 

فرمت فایل    power pointتعداد صفحات :  19  صفحه

 

 

 

کلمـه مثلثـات (Tringonometry) از ترکیب دو واژه یونانیTringonon (مثلث) با معــــادل لاتین Triangle و نیز metron (اندازه) با معادل لاتین measure گرفته شده است. بنابراین در نگاه نخست در مثلثات به مطالعه مثلث ها و روابط بین اضــــلاع و زوایای آنان پرداخته می شود در این مقاله با توجـه به مباحث کتب درسی دوره دبیرستان و در طول محتوی آنها مطالبی ارائه می شود.

 

 


دانلود با لینک مستقیم


پاورپوینت درباره قوانین مهم مثلثات در مثلث و برخی روابط مثلثاتی در مثلث

مقاله درباره مثلث خیام پاسکال

اختصاصی از فایلکو مقاله درباره مثلث خیام پاسکال دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 9

 

مثلث خیام پاسکال

بسیاری عقیده دارند که مثلث حسابی پاسکال را باید مثلث حسابی خیام نامید و برخی پا را از این هم فراتر گذاشته اند .

و معتقد اند که دو جمله ای نیوتون را باید دوجمله ای خیام نامید . اندکی در این باره دقت کنیم.

همه کسانی که با جبر مقدماتی آشنایی دارند ،"دستور نیوتن" را درباره بسط دوجمله ای میشناسند. این دستور برای چند حالت خاص (وقتی n عددی درست و مثبت باشد) چنین است:

(a+b)0 = 1 (1) (a+b)1 = a+b (1,1) (a+b)2 = a2+2ab+b2 (1,2,1) (a+b)3 = a3+3a2b+3ab2+b3 (1,3,3,1) (a+b)4 = a4+4a3b2+6a2b2+4a2b3+b4 (1,4,6,4,1). . .

اعداد داخل پرانتزها، معرف ضریبهای عددی جمله ها در بسط دوجمله ای است. بلیز پاسکال (Blaise Pascal) فیلسوف و ریاضی دان فرانسوی که کم وبیش با نیوتون همزمان بود، برای تنظیم ضریبهای بسط دوجمله ای، مثلثی درست کرد که امروز به "مثلث حسابی پاسکال" مشهور است. طرح این مثلث برای نخستین بار در سال 1665 میلادی در "رساله مربوط به مثلث حسابی "چاپ شد.مثلث حسابی چنین است:

1 1 11 2 1 1 3 3 11 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 دراین مثلث از سطر سوم به بعد هر عددبرابر با مجموع اعداد بالا و سمت چپ آن در سطر قبل است و بنابراین میتوان آنرا تا هر جا که للازم باشدادامه داد. هرسطر این مثلث ضریبهای بسط دوجمله ای را در یکی از حالتها بدست میدهد بطوری که n همان شماره سطر باشد.

ضریبهای بسط دوجمله ای (برای توانهای درست و مثبت) حتا در سده دوم پیش از میلاد البته به صورت کم و بیش مبهم برای دانشمندان هندی روشن بوده است .باوجود این حق این است که دستور بسط دو جمله ای با نام نیوتن همراه باشد زیرا نیوتن آن را برای حالت کلی و وقتی n عددی کسری یا منفی باشد در سال 1676میلادی بکاربرد.که البته در این صورت به یک رشته بی پایان تبدیل میشود.

اما در باره مثلث حسابی وضریبهای بسط دوجمله ای در حالت طبیعی بودن n. از جمله، دستور بسط دو جمله ای را میتوان در "کتاب حساب مخفی" میخائیل شتیفل جبردان آلمانی (که در سال 1524 چاپ شد) پیدا کرد.

در سال 1948 میلادی،پاول لیوکی آلمانی،مورخ ریاضیات،وجود دستور نیوتن را برای توانهای طبیعی ،دز کتاب "مفتاح الحساب"(1427 میلادی) غیاث الدین جمشید کاشانی کشف کرد. بعدها س.آ.احمدوف ،مورخ ریاضیات و اهل تاشکند، دستور نیوتون وقانون تشکیل ضریبهای بسط دوجمله ای را،در یکی از رساله های نصر الدین توسی،ریاضیدان بزرگ سده سیزدهم میلادی ،کشف کرد (این رساله توسی درباره محاسبه بحث میکند). چه جمشید کاشانی وچه نصرالدین توسی ،این قاعده را ضمن بررسی قانون های مربوط به ریشه گرفتن از عددها آورده اند.

همچنین براساس آگاهی هایی که داریم حکیم عمر خیام رساله ای داشته که خود رساله تاکنون پیدا نشده ولی از نام آن "درستی شیوه های هندی در جذر وکعب "اطلاع داریم ،کهدر آن به تعمیم قانونهای هندی درباره ریشه دوم و سوم ،برای هر ریشه دلخواه پرداخته.لذا خیام از "دستور نیوتن" اطلاع داشته.

اما بنا به اسناد تاریخی معتبر قانونهای مربوط بهضریبهای بسط دوجمله ای وطرح مثلث حسابی تا سده دهم میلادی(برابر چهارم هجری) جلو میرود و به کرجی (ابوبکر محمد بن حسن حاسب کرجی ریاضیدان سده ده و یازده میلادی) پایان میپذیرد .بنابراین حتی" مثلث حسابی پاسکال" را هم از نظر تاریخی نمیتوان "مثلث حسابی خیام " نامید.

فواره رومی و مثلث خیام پاسکال

آب با آهنگ یک(یعنی واحد وزن بر واحد زمان)به داخل کاسه می ریزد در دو طرف این کاسه

آب به طور متقارن با آهنگ ۲/۱لبریز شده و به داخل دو کاسه مشابه می ریزد آب این دو کاسه


دانلود با لینک مستقیم


مقاله درباره مثلث خیام پاسکال

پاورپوینت مثال ها هندسه

اختصاصی از فایلکو پاورپوینت مثال ها هندسه دانلود با لینک مستقیم و پر سرعت .

پاورپوینت مثال ها هندسه


پاورپوینت مثال ها هندسه

لینک پرداخت و دانلود در "پایین مطلب"

فرمت فایل: پاورپوینت

تعداد اسلاید: 8

 

مثال 1:نشان دهید میانه هر مثلث آن را به مثلث معادل تقسیم می کند

•11- ثابت کنید مجموع فواصل هر نقطه روی قاعده مثلث متساوی الساقین از دو ساق برابر طول ارتفاع وارد بر ساق است

دانلود با لینک مستقیم


پاورپوینت مثال ها هندسه