دانلود با لینک مستقیم و پر سرعت .
چکیده
تولید فرمالدیید که یکی از ترکیبهای پرارزش و پرمصرف است به طور معمول از اکسایش کاتالیستی متانول در راکتورهای بستر ثابت به دست میآید. در این تحقیق فرایند ذکر شده در راکتور بستر سیال مورد مطالعه قرار گرفته است. بدین منظور یک راکتور بستر سیال به قطر 22 میلیمتر و طول 50 سانتیمتر از جنس فولاد زنگنزن که قابلیت کنترل دما و شدت جریان مواد را داراست ساخته شده است. اثر پارامترهای متفاوت عملیاتی بر عملکرد راکتور بالا مطالعه شده است. نتیجهها با سه مدل سه فازی تطبیق داده شده و میزان دقت مدلها در پیشبینی رفتار راکتور مشخص شده است. نتیجهها نشان میدهد که تحت شرایط مناسب میزان تبدیل متانول به فرمالدیید تا 89 درصد افزایش مییابد و با بالا رفتن سرعت گاز در بستر سیال این میزان کاهش مییابد که دلیل آن کاهش زمان اقامت و در نتیجه کاهش تماس متانول با فرمالدیید است. بررسی مدلها نشان میدهد که بیشترین انحراف مربوط به مدل Shiau _ Lin با 23 درصد خطا و بیشترین تطابق مربوط به مدل El_Rafai و El_Halwagi با 10 درصد خطا میباشد. بنابراین در این واکنش جریانهای برگشتی به دلیل کوچک بودن قطر راکتور در مقایسه با طول آن از اهمیت کمتری برخوردار است.
مقدمه
بسترهای سیال از جمله دستگاههای مهم عملیاتی در فرایندهای شیمیایی هستند که درآنها محدودیتهایی از قبیل انتقال حرارت یا نفوذ وجود دارد. از جمله مزایای راکتورهای بستر سیال نسبت به راکتورهای بستر ثابت کنترل دمای بهتر، عدم وجود نقطههای داغ در بستر، توزیع یکنواخت کاتالیست در بستر و عمر طولانی کاتالیست است. بنابراین انجام فرایندها در بستر سیال میتواند حایز اهمیت باشد. یکی از موارد مهم در بسترهای سیال مدلسازی آنهاست. مدلسازی راکتورهای بستر سیال ابتدا با نظریه محیط دوفازی آغاز شد. در بین مدلهای اولیه دوفازی میتوان از مدل Davidsoin_Harrison نام برد.
در این مدل فاز چگال (امولسیون) و فاز حبابهای گاز دو فاز مدل را تشکیل میدهند و افزون بر این فرض شده است که فاز امولسیون در حداقل سرعت سیالیت باقی میماند و نیز قطر حباب در طول بستر ثابت بوده و واکنش در فاز امولسیون اتفاق میافتد و انتقال جرم بین دو فاز صورت میگیرد. این مدل بر مبنای اصول هیدرودینامیک بنا شده است ولی جریانهای برگشتی در فاز امولسیون را درنظر نمیگیرد. Fryer مدل جریان برگشتی غیر همسو را که بر مبنای مدل بستر حبابی بود ارایه کرد و سرعت جریان برگشتی جامد را برابر با حداقل سرعت سیالیت در نظر گرفت.
مدل سه فازی Kunii و Levenspiel بر اساس اصول هیدرودینامیک بنا شده و بستر از سه ناحیه حباب، ابر و امولسیون تشکیل شده به طوری که دنباله به عنوان بخشی از فاز ابر در نظر گرفته میشود. حباب صعود کننده از مدل Davidsoin پیروی میکند و فاز امولسیون در شرایط حداقل سیالیت باقی میماند که در آن پارامتر اصلی قطر حباب است که در بستر توزیع میشود و یک قطر موثر در طول بستر در نظر گرفته میشود. واکنش درجه اول و جریان در فاز حباب، پلاگ در نظر گرفته میشود. تبادل جرم بین فازهای حباب _ ابر و ابر_ امولسیون صورت میگیرد.
بخش تجربی
مواد شیمیایی
متانول، هپتامولیبیدات آمونیوم، آهن نیترات، بیسموت نیترات از شرکت MERCK و از نوع آزمایشگاهی تهیه و در تمام فرایند از آب مقطر استفاده شد.
تجهیزات و دستگاهها
برای ساخت کاتالیست از همزن آزمایشگاهی با دور قابل تنظیم 50 تا rmp1500 ساخت شرکت طبآزما و برای تنظیم شرایط واکنش ساخت کاتالیست از حمام با دمای ثابت مجهز به ترموستات و Ph متر دیجیتال استفاده شد. راکتور مورد استفاده به قطر داخلی 22 میلیمتر و ارتفاع 50 سانتیمتر دارای 5 قسمت مجزا و مجهز به ترموکوپل نوع K برای اندازهگیری پروفایل دمایی در طول بستر است. جنس راکتور و تجهیزات آن از جنس فولاد زنگنزن L 316 AISI است. برای گرم کردن هوا از دو کوره سری با توان W 1500 برای هر کدام و برای تبخیر متانول از یک کوره به توان KW 1 به صورت مجزا استفاده شد. سیستم کنترل از نوع PID و حسگر دما از نوع K میباشد. شماتیک سیستم مورد استفاده در شکل 1 آمده است. نتیجهها با استفاده از SHIMATZU GC 17A تجزیه شد.
شکل ص 61
شکل 1 _ نمای کلی راکتور بستر سیال مورد استفاده
روش آزمایش
برای انجام آزمایش 2 تا 3 گرم کاتالیست را در راکتور قرار داده و سیستم با گاز نیتروژن به مدت 2 ساعت تمیز شد تا شرایط دمایی در سیستم برقرار شود. سپس به آهستگی جریان هوا روی سیستم باز شده و جریان نیتروژن قطع شد سپس به آهستگی جریان متانول ورودی به کوره تبخیر برقرار شد تا میزان متانول به حد مطلوب و مشخص برسد. پس از گذشت 10 دقیقه نمونهگیری و تجزیه خروجی از کندانسور انجام و این عمل در فاصلههای زمانی معین تکرار شد تا خروجی راکتور به شرایط پایدار برسد.
شرایط عملیاتی جریان سیال حبابی
در راکتورهای بستر سیال حرکت رو به بالای حبابهای گاز سبب اختلاط در فاز امولسیون و ایجاد شرایط همگن در راکتور میشود. بنابراین برای برقراری این نظام جریان در راکتور بایستی پارامترهای عملیاتی سیستم تنظیم شود.
از جمله این پارامترها میتوان به سرعت گاز ورودی اشاره کرد. این سرعت تابعی از اندازه و چگالی ذرهها و نیز چگالی گاز سیالکننده و برخی پارامترهای فیزیکی دیگر میباشد. در تحقیقات حاضر اندازه ذرههای کاتالیست بین 147 تا 417 میکرومتر و حداقل سرعت سیالسازی بین 98 تا 333 سانتیمتر بر ثانیه است. لذا با توجه به شرایط عملیاتی ذکر شده همواره نظام جریان سیال حبابی برقرار بوده است.
نتیجهگیری نهایی
اکسایش جزیی کاتالیستی متانول به فرمالدیید به طور عمومی در راکتورهای بستر ثابت انجام میشود اما عدم کنترل موثر دما در راکتور و نیز محدودیت اندازه ذرهها، مشکلهای افت فشار یا مقاومتهای نفوذی را در پی دارد. همچنین نتیجههای به دست آمده در مطالعه حاضر نشان میدهد که واکنشهایی مانند تبدیل متانول به فرمالدیید به سادگی و با بازده بالا در راکتورهای بستر سیال قابل اجراست. نتیجههای بررسی حاضر حاکی از آن است که راکتورهای بستر سیال محتوی ذرههای ریز کاتالیست اکسید آهن _ اکسید مولیبیدن، به علت ایجاد تبدیل بالای متانول، سطح تماس مطلوب، گزینشپذیری مناسب و ساییدگی اندک ذرهها، بهترین شرایط عملیاتی را برای اکسایش متانول به فرمالدیید فراهم میآورد. بسترهای سیال دارای بازده پایینتری نسبت به بسترهای ثابت هستند اما مزایای فراوان این بسترها آنها را عنوان انتخابی برجسته و ممتاز نسبت به بسترهای ثابت درآورده است. مناسبترین مدل برای تطبیق دادههای تجربی در این مطالعه EL_Rafai و El_ Halwagi است. نتیجههای به دست آمده از این سیستم نشان میدهد که تحت شرایط مناسب میزان تبدیل متانول به فرمالدیید در محدوده مورد بحث تا 89 درصد افزایش مییابد. نتیجهها نشان میدهد که بالا رفتن سرعت گاز در بستر سیال باعث کاهش میزان تبدیل میشود و این مساله به دلیل کاهش زمان اقامت و در نتیجه کاهش تماس متانول با فرمالدیید است. نتیجههای بررسی مدلها نشان میدهد که بیشترین انحراف مربوط به مدل Shiau و El_Halwagi، بیشترین تطابق با دادهها را با 10 درصد خطا دارد. بنابراین میتوان نتیجه گرفت که در واکنش تبدیل متانول به فرمالدیید جریانهای برگشتی اهمیت کمتری دارند و این موضوع منطقی است زیرا قطر راکتور در مقایسه با طول آن کوچک است و این مساله بیانگر عدم وجود جریانهای برگشتی است.
بهینهسازی پویای راکتور شکست حرارتی اتیلن دی کلرید
چکیده
در تحقیق حاضر بررسی مختصری روی روشهای متفاوت بهینهسازی دینامیکی صورت گرفته است. در ادامه بهینهسازی دینامیکی راکتور شکست حرارتی اتیلن دی کلرید برای تولید وینیل کلرید (مونو پلیمر PVC ) مورد بررسی قرار گرفته است. راکتور حاضر یک راکتور جریان قالبی است. در این مساله به جای استفاده از توابع هدف وابسته به زمان از تابع وابسته به طول راکتور استفاده شده است. تابع هدف در اینجا در بیشینهسازی میزان تولید VCM در انتهای راکتور است. قیدهای موجود نیز معادلههای دیفرانسیل حالت سیستم است. در نهایت با بررسی های صورت گرفته از روش پونتریاگین برای حل مساله بهره گرفته شده است. برای این کار در محیط برنامهنویس دلفی کدنویسی صورت گرفته است و پس از اجرای برنامه، پروفیل دمای بهینه راکتور و همچنین پروفیلهای بهینه متغیرهای دیگر به عنوان نتیجههای آن مورد بررسی و تحلیل قرار گرفته است.
مقدمه
به جهت نیاز روزافزون به انعطافپذیری عملیاتی بیشتر در فرایندهای شیمیایی، بهینهسازی دینامیکی، اهمیت صدچندان در صنعت پیدا کرده است. مسایل بهینهسازی دینامیکی نخستین بار در سال 1950 برای کاربردهای هوافضایی مطرح شد که بیشتر در مهندسی فرایند رخ میدهد.
نمونههایی از قبیل یافتن مسیر بهینه در حالت گذرا در فرایندهای گوناگون، یافتن پروفیل دمای بهینه که انتخابگری را در یک راکتور ناپیوسته در جهت فراورده مورد نطر بیشینه کند، تجزیه و تحلیل واحدهای فرایندی در هنگام شروع و خاتمه عملیات و تغییر حالتهایی از قبیل تغییر خوراک فراورده، مطالعات ایمنی، ارزیابی شکلهای متفاوت کنترلی و .... مسایلی هستند که یک مهندس فرایند را برآن میدارد که به فرایندهای بهینهسازی دینامیکی دسترسی پیدا کند. کاربردهای بهینهسازی دینامیکی از واحدهای نیمه صنعتی آزمایشگاهی تا فرایندهای صنعتی بزرگ گسترده شده است.
قبل از اینکه واحدبندی فرایندها صورت گیرد یک برنامهریزی عملیاتی استراتژیک موردنیاز خواهد بود. این برنامهریزیها و سیاستگذاری های عملیاتی مدون بر مبنای تجاربی است که سالهای متمادی کار بر روی واحدها به دست آمده است. در بسیاری از موردها به خاطر پیچیدگیها و چندین متغیره بودن بیشتر فرایندهای شیمیایی نمیتوان با استفاده از برنامهریزیهای عملیاتی تجربی، عملیات دینامیکی بهینهای را برای فرایند مورد نظر تضمین کرد.
فرضیات
1_ توجه شود که تابع هدف در مسایل بهینهسازی دینامیکی چون با توجه به مدل سیستم که شامل معادلههای دیفرانسیلی است بهینه میشود و بر اساس عملیات جاری سیستم است صریح نخواهد بود.
2_ در این تحقیق از تشابه ابعاد استفاده شده به صورتی که به جای بررسی تابعهای هدفی که در بعد زمان هستند از تابع هدفی استفاده شده است که در بعد طول راکتور جریان قالبی تعریف شده باشد. در این صورت معادلههای دیفرانسیلی حاکم بر سیستم به وسیله موازنه جرم و انرژی و مومنتم در حالت پایا به دست خواهند آمد.
3_ تابع هدف در این مساله به دست آوردن بیشترین فراورده در انتهای راکتور با استفاده از یک پروفیل شار حرارتی بهینه در طول راکتور است که در اینجا متغیر کنترلی دمای جداره خارجی راکتور نسبت به طول راکتور به وسیله یک رابطه جبری به شار حرارتی ارتباط داده میشود.
4_ روش انتخابی برای حل مساله روش کنترل بهینه پونتریاگین بوده است که دلایل آن بررسی شده است.
5_ در قسمت مدلسازی از تشکیل کک در لولههای راکتور صرف نظر شده است.
روشهای بهینهسازی دینامیکی
بر اساس شکل 1 روشهای حل عددی مسایل بهینهسازی دینامیکی بنا بر نوع فرمولبندی مساله به دو صورت مستقیم و غیر مستقیم دستهبندی میشوند.
در روشهای مستقیم از فرمولبندی مستقیم مسایل بهینهسازی دینامیکی که به صورت رابطههای (1) تا (3) است استفاده میشود.
(1) (x(t f)) J= min u(t), t f
(2) Subject to: x= F(x,u), x(0) = x0
(3) 0 0 T(x(t f)) S(x,u)
که درآن J نمایه اسکالری است که باید کمینه شود، X بردار n بعدی متغیرهای حالت با شرایط اولیه داده شده X0 است، u بردار m بعدی ورودیها، s بردار بعدی محدودیتهای مسیری (که شامل محدودیتهای حالت و موانع ورودی میباشد)، T بردار بعدی محدودیتهای پایانی و F بردار توابع میباشد. یک تابع اسکالر نهایی است. Tf نیز زمان نهایی است.
در این روش بهینهسازی فقط در فضای متغیرهای ورودی یا کنترلی رخ خواهد داد. از مشخصات اصلی و کلیدی تخمین همزمان این خواهد بود که بهینهسازی در یک فضای کاملی از متغیرهای ورودی (کنترلی) و نیز متغیرهای حالت سیستم که گسسته شدهاند رخ خواهد داد. به طور کلی توضیح این مطلب ضروری به نظر میرسد که روشهای مستقیم حل عددی مسایل بهینهسازی دینامیکی بیشتر در مسایلی که تعداد متغیرهای حالت بسیار بیشتر از متغیرهای کنترلی است و یا به عبارتی مسایل با ضریب بالا کاربرد خوبی دارند.
مدلسازی سیستم
موازنه جرم
برای استخراج رابطههای معادله پیوستگی از موازنه جرم روی سیستم مورد مطالعه استفاده میشود. با توجه به شکل هندسی سیستم مورد نظر که استوانهای میباشد از سیستم مختصات استوانهای برای بیان معادلهها استفاده میشود.
موازنه مومنتم
برای به دست آوردن رابطه افت فشار در درون لوله راکتور قانون بقای مومنتم استفاده میشود. در مورد شکست حرارتی اتیلن دی کلرید برای تولید وینیل کلرید لولههای راکتور به صورت افقی است و با در نظر گرفتن این موضوع که نیروی وزن در مقایسه با دیگر نیروهای موجود (فشار و تنش) ناچیز است میتوان از این نیرو صرف نظر کرد.
نتیجهها و بحث
برای اجرای برنامه ابتدا برنامه بهینهسازی در نظر گرفته نشده و معادلههای حاکم بر سیستم اجرا شده و پارامترهای مهم نظیر ضریبهای معادلههای سینتیکی، ضریبهای معادلههای تجربی عدد ناسلت و ضریب اصطکاک تنظیم شدهاند تا بتوان به جوابهای تجربی واحد پیرولیز اتیلن دی کلرید پتروشیمی آبادان رسید. این بخش از برنامه با اجرای حدود 2000 مرتبه برنامه برای تنظیم پارامترهای ذکر شده به انجام رسید. بعد از اطمینان از عملکرد معادلههای سیستم برنامه بهینهسازی دینامکی اجرا شده و نتیجههای آن که عبارت است از دمای جداره بهینه برای به دست آوردن بیشترین تولید VCM .
در حقیقت خوراک قبل از وارد شدن به داخل راکتور پیشگرم میشود ولی از آنجا که لازم است از شروع واکنشهای شکست حرارتی در منطقه پیشگرم کننده جلوگیری شود به طور معمول در ابتدای راکتور حرارت اعمال شده صرف رساندن مخلوط به دمای واکنش میشود و در این ناحیه واکنشی صورت نمیگیرد. واکنشهای پیرولیز به شدت گرماگیر هستند و هنگامی که شروع میشوند حرارت اعمال شده را به سرعت جذب میکنند. به همین دلیل در ناحیه میانی دمای مخلوط به کندی افزایش مییابد.
نتیجهگیری نهایی
با توجه به نمودارهای خروجی از برنامه بهینهسازی دینامیکی این نکته یافت میشود که راکتور در حالت بهینه دارای درصد تبدیل بیشتری است و از آنجا که میتوان تا دماهای به میزان کمی بالاتر از K 810 به عنوان خروجی راکتور دست پیدا کرد بدون اینکه آسیب جدی به لولههای راکتور برسد میتوان با اصلاح نوع سوخت برای تولید حرارت مورد نظر و پدید آوردن پروفیل دمایی به حالت بهینه راکتور دست پیدا کرد.
بهینه سازی فرایند استخراج روغنهای اساسی پوست تازه میوه نارنج با روش استخراج با کربن دی اکسید فوق بحرانی
چکیده
هیدروکربنهای ترپنی ترکیبهای اصلی اسانسی پوست میوه مرکبات هستند. از مهمترین این ترپنها، لیمونن است. این ترکیب به دما حساس بوده و روشهای استخراجی مبتنی بر دما مانند تقطیر با آب جوش یا بخار آب جوش، برای استخراج آن مناسب نیست. از طرفی روش استخراج با سیال فوق بحرانی (SF_CO2) CO2 به علت عمل در دمای پایین انتظار میرود کمترین تاثیر مخرب را بر کیفیت مواد استخراجی داشته باشد. در این پژوهش روغن اساسی از فلاودو پوست تازه میوه نارنج واریته آمار با استفاده از روش استخراج با سیال فوق بحرانی (SFE) استخراج شد. نظر به اینکه فرایند استخراج با سیال فوق بحرانی به شدت تحت تاثیر عاملهای متفاوت عملیاتی به ویژه دما و فشار است شرایط بهینه استخراج به روش SFE مورد بررسی قرار گرفت. برای این منظور با استفاده از طرح آماری تاگوچی در 9 وضعیت (راند) اثر چهار عامل در سه سطح شامل فشار (100،200،300 اتمسفر)، دما (35،45، 55 درجه سانتیگراد) زمان دینامیک استخراج (15،25 و35 دقیقه و درصد حجمی اصلاحگر متانول (0،5،10 درصد) بر میزان درصد حداکثر استخراج لیمونن بررسی شد. برای شناسایی مواد متشکل روغن به دست آمده از روش کروماتوگرافی گازی GC_MS و ستون HP.5 استفاده شد. نتیجه آزمایشها نشان داد که در بهترین راند روش SFE ( فشار 300 اتمسفر، دما 45 درجه سانتیگراد، زمان دینامیک استخراج 15 دقیقه و میزان درصد اصلاحگر 10 درصد) حدود 94 درصد لیمونن استخراج شد.
مقدمه
میوه نارنج Citrus aurantium var.amara.L. از نهاندانگان و گیاهی گلدار از تیره مرکبات Rutacea و جنس Citrus است.
اسانس آن با بوی قوی در صنایع داروسازی، پزشکی، آرایشی_ بهداشتی، صنایع غذایی به ویژه صنایع نوشابهسازی و شیرینیپزی استفاده میشود. در نوشابههای با طعم تلخ مثل انواع ماءالشعیر استفاده از این اسانس مزیت زیادی در ایجاد طعم دارد.
برای استخراج اسانس و روغنهای اساسی از قسمتهای متفاوت گیاهان به طور سنتی از روش استخراج با حلال و تقطیر استفاده میشود. روشهای استخراجی با حلال مانند تقطیر با آب جوش یا بخار آب جوش مبتنی بر دما بوده و برای استخراج مواد معطر که دارای ترکیبات فرار حساس به دما هستند مناسب نیست.
استفاده از گاز کربنیک به عنوان حلال در استخراج اسانسها کاربرد بیشتری دارد زیرا این گاز در دما و فشار پایین (دمای 1/31 درجه سانتیگراد و فشار 8/74 اتمسفر) به حالت فوق بحرانی رسیده و بنابراین استخراج در دمای پایین صورت گرفته و کمترین آسیب به ترکیبهای فرار وارد میآید.
در مورد مرکبات در سال 1992 محققی به نام شین و همکارانش تحقیقی بر مبنای استخراج هیدروکربنهای ترپنی از روغن پوست مرکبات به روش SFE انجام دادند. کوپلا و همکاران در سال 1987 از روش SFE در دمای پائین برای جداسازی ترپنها از روغن پوست پرتقال استفاده کردند. در مورد استفاده از این روش برای استخراج روغن پوست نارنج و بررسی کیفیت روغن استحصالی در شرایط متفاوت هنوز تحقیقی گزارش نشده است.
در این پژوهش از پوست تازه میوه رسیده نارنج واریته آمارا به روش استخراج با سیال فوق بحرانی روغن اساسی استخراج شده و سپس کارایی روش بر اساس میزان لیمونن استخراجی در شرایط متفاوت عملیاتی فشار، دما، زمان دینامیک استخراج و درصد اصلاحگر مورد بررسی و مقایسه قرار گرفت.
مواد و روشها
برای انجام این تحقیق ازپوست تازه میوه رسیده نارنج واریته Citrus aurantium var.amara.L. از تیره مرکباتRutacea و جنس Citrus به دست آمده در ماه بهمن 1382 از باغهای نمونه استان گیلان استفاده شد.
استخراج با سیال فوق بحرانی(SFE)
برای انجام این پژوهش از دستگاه استخراجگر فوق بحرانی مدل multipurpose system 225/ Suprex Mps آزمایشگاه دانشکده علوم پایه دانشگاه تربیت مدرس تهران که دارای محفظه استخراجگری به حجم 8 میلی لیتر است و همچنین گاز کربنیک در حالت فوق بحرانی به عنوان حلال استفاده شد.
در استخراج اثر چهار فاکتور و هر فاکتور در سه سطح شامل فشار (100،200 و 300 اتمسفر)، دما (35، 45 و 55 درجه سانتیگراد)، زمان دینامیک استخراج _ زمان پس از مرحله استاتیک که ورود سیال فوق بحرانی و مخلوط شدن با مواد همزمان با خروج سیال فوق بحرانی با مواد استخراجی از محفظه است (15، 25 و 35 دقیقه) و میزان درصد حجمی اصلاحگر متانول (0 ،5 و 10 درصد v/v) در میزان درصد لیمونن استخراجی بررسی شد. به وسیله طرح آماری تاگوچی اثر این سطوح در 9 آرایه (راند) بررسی شدند (جدول 1). در تمام 9 آرایه زمان استاتیک استخراج (زمان اولیه که سیال در محفظه استخراج با ماده مخلوط شده و عمل استخراج بدون جابهجایی و در شرایط استاتیک صورت میگیرد) با توجه به شرایط دستگاه و حجم سلول استخراج 20 دقیقه تعیین شد. از حلال دی کلرومتان خالص برای جمعآوری نمونهها استفاده شد.
زمان دینامیک(دقیقه) درصد متانول (v/v) دما( درجه سانتیگراد) فشار (اتمسفر) متغیر
راند
15 0 35 100 1
25 5 45 100 2
35 10 55 100 3
25 10 35 200 4
35 0 45 200 5
15 5 55 200 6
35 5 35 300 7
15 10 45 300 8
25 10 55 300 9
جدول 1_ چهار متغیر فشار، دما، درصد اصلاحگر و زمان دینامیک و سطوح متفاوت آنها در راندهای متفاوت استخراج به روش SFE
از آنجایی که نمونههای مورد آزمایش تازه بود و آب گیری نشده بودند حلال به همراه لیمونن و بقیه مواد استخراجی مقدار زیادی آب نیز استخراج می کند. در ادامه فرایند وقتی در لولهها و مجاری فشار شکن که ناگهان فشار کاهش مییابد و سیال از حالت فوق بحرانی خارج شده و توانایی محلول نگه داشتن مواد را از دست میدهد در این حالت مواد محلول و از جمله آب از حلال جدا شده و با توجه به خواص ترمودینامیکی سیالات سیال CO2 به سرعت با جذب دما از محیط تبخیر میشوند که این موضوع باعث برودت شدید در مجاری فشارشکن میشود که به دلیل وجود آب در این لولهها احتمال تشکیل بلورهای یخ و برف و مسدود شدن میسر میشود به همین علت در استخراج مواد آنها را قبلا آبزدایی میکنند اما در این تحقیق به همراه پالپ پوست میوه، پودر نمگیر سدیم سولفات خشک را نیز در سل استخراجگر ریخته و بلافاصله کار استخراج را انجام دادیم. بنابراین ضمن جلوگیری از مشکل مسدود شدن در عمل از پوست تازه عمل استخراج انجام شد.
متانول و دی کلرومتان و پودر سدیم سولفات خشک به کار رفته در این آزمایشها خالص و از فراوردههای شرکت مرک بودند. گاز CO2 با خلوص 99/99 درصد از شرکت پرهامگاز ایران تهیه شد. همچنین ترکیبهای نمونههای استخراجی با نمونه به دست آمده به وسیله استخراج به روش تقطیر (HD) مقایسه شد.
شناسایی ترکیبها در روغن اساسی استخراجی
برای شناسایی مواد تشکییل دهنده روغن به دست آمده از روش گاز کروماتوگرافی پیوسته شده با طیفسنج جرمی (GC_MS) استفاده شد. برای انجام کروماتوگرافی از دستگاه GC مدل 6890_ HP و با ستون 25/0 (mm* m 25/0 * m 30) HP.5.MS و Mass spectra کوپل شده با مشخصات HP_5973 لابراتوار مجتمع آزمایشگاهی دانشگاه آزاد اسلامی واحد علوم و تحقیقات تهران استفاده شد.
فرمت این مقاله به صورت Word و با قابلیت ویرایش میباشد
تعداد صفحات این مقاله 13 صفحه
پس از پرداخت ، میتوانید مقاله را به صورت انلاین دانلود کنید