فایلکو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

فایلکو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

فایل پاورپوینت درس پنجم : سخنی که سه بار تکرار شد.

اختصاصی از فایلکو فایل پاورپوینت درس پنجم : سخنی که سه بار تکرار شد. دانلود با لینک مستقیم و پر سرعت .

فایل پاورپوینت درس پنجم : سخنی که سه بار تکرار شد.


فایل پاورپوینت درس پنجم : سخنی که سه بار تکرار شد.

دانلود پاورپوینت درس پنجم : سخنی که سه بار تکرار شد

فرمت فایل: پاورپوینت

تعداد اسلاید: 4

 

 

 

 

دانلود پاورپوینت درس پنجم : سخنی که سه بار تکرار شد


دانلود با لینک مستقیم


فایل پاورپوینت درس پنجم : سخنی که سه بار تکرار شد.

دانلود پاورپوینت ریاضی دوم دبستان فصل چهارم : عددهای سه رقمی ..

اختصاصی از فایلکو دانلود پاورپوینت ریاضی دوم دبستان فصل چهارم : عددهای سه رقمی .. دانلود با لینک مستقیم و پر سرعت .

دانلود پاورپوینت ریاضی دوم دبستان فصل چهارم : عددهای سه رقمی ..


دانلود پاورپوینت ریاضی دوم دبستان فصل چهارم : عددهای سه رقمی ..

پاورپوینت ریاضی دوم دبستان فصل چهارم : عددهای سه رقمی

فرمت فایل: پاورپوینت

تعداد اسلاید: 30

 

 

 

 

معرفی پول

واحد پول کشورمان ریال است. پول موجود در کشورمان به صورت سکه و اسکناس می باشد. مردم ایران در قدیم برای خرید کالا از سکه استفاده می کردند. اما امروزه بیشتر از اسکناس استفاده می کنند.


دانلود با لینک مستقیم


دانلود پاورپوینت ریاضی دوم دبستان فصل چهارم : عددهای سه رقمی ..

دانلود مقاله درباره سینتیک و سینماتیک سه بعدی

اختصاصی از فایلکو دانلود مقاله درباره سینتیک و سینماتیک سه بعدی دانلود با لینک مستقیم و پر سرعت .

دانلود مقاله درباره سینتیک و سینماتیک سه بعدی


دانلود مقاله درباره سینتیک و سینماتیک سه بعدی

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 12

 

سینتیک و سینماتیک سه بعدی

7.0 – مقدمه

در 15 سال گذشته ، پیشرفت های تجاری عمده ای در نرم افزارها و سخت افزارهای سه بعدی بوجود آمده است.

با صرفنظر از اینکه از چه سیستمی استفاده می شود، مرحله جمع آوری داده ها، یک فایل از مختصات طول و عرض و ارتفاع مارکرها در هر زمان است. این مختصات در سیستم مرجع عمومی GRS .

هدف از این فصل این است تا مرحله‌هایی که این داده های مختصاتی تبدیل به محورهای آناتومی اجزا بدن می شوند را مرور کنیم بطوریکه یک آنالیز سینماتیکی بتواند در یک روش مشابه انجام داده شود .

7.1- سیستم های محور

چندین سیستم مرجع محور وجود دارند که باید در مجموع با GRS ، که قبلا در بالا معرفی شد نشان داده شوند . مارکرهایی که روی هر یک از قسمت ها قرار داده می شوند ، یک سیستم محور مارکر بوجود می اورند که یک سیستم مرجع موضعی ، LRS ، برای هر جزء است. یک LRS ثانویه ، یک سیستم محور است که محورهای اصلی هر یک از اعضا را نشان می دهد به علت استفاده از نشانه های خاص آناتومیکی– اسکلتی در این روش به منظور تعریف محورها ، این سیستم به عنوان سیستم مختصات آناتومیکی نامیده شده است.

7.1.1- سیستم مرجع عمومی

به منظور راحتی بر جهت محورهای GRS تاکید خواهیم کرد: x جهت جلو و عقب است ، y محور عمودی (گرانشی) است و z محور چپ و راست (افقی/میانی) است . بنابراین صفحه xz صفحه افقی است و با توجه به تعریف متعامد با محور عمودی است . جهت محورهای GRS با این محورها در صفحه نیرو یکسان است .

برای اینکه مطمئن شویم که این چنین است ، یک سیستم درجه بندی فضایی ( یک فرم فضایی صلب یا یک محور مکانیکی صلب سه بعدی ) بوسیله مارکرها اندازه گیری می شود و روی یکی از صفحات نیرو قرار می گیرد و در طول محور x، zسکوی نیرو ردیف می شود.

موقعیت هر یک از مارکرها نسبت به مبدا صفحه نیرو مشخص می شود و به کامپیوتر داده داده می شود. مبدا هر یک از سکوهای اضافی بوسیله یک دو خم z، x سکوی اولی ثبت می شود.

یک دو خم اضافی در جهتy ضروری خواهد شد اگر آن سکوی اضافی در یک ارتفاع متفاوت از اولی بود ( بواسطه یک آنالیز بیومکانیکی پلکان یا گردش پلکان ضروری خواهد بود) . تعداد زیادی از آزمایشگاه ها یک نظم ثابت از دوربین ها دارند ، بنابراین هیج نیازی به کالیبره کردن GRS در هر روز نیست.

در آزمایشگاههای بزرگ کلینیکی و همینطور سیستمی که در فصل قبل توضیح داده شد نیز این چنین است. ( نمودار 2.12 را ببینید .) در تعداد زیادی از موقعیت های پژوهش دوربین ها بازچیده می شوند تا به بهترین روش حرکت جدید را ضبط کنند.

بنابراین به درجه بندی جدید GRS نیاز دارد. وقتیکه درجه بندی کامل شد دوربین ها نمی توانند حرکت داده شوند و توجه بیشتری باید شود تا مطمئن شویم آنها بطور تصادفی جابجا نشده باشند.

7.1.2- سیستم مرجع موضعی یا دوران محورها

دانشجویان به چندین بخش در فصل6 ارجاع داده می شوند و از آنها خواسته می شود دوباره بخش 6.2.6 تا انتهای 6.2.7.2 را ببینند. این بخش ها جابجایی سیستم های مرجع و بردارهای سرعت برای سیستم های دو بعدی و سه بعدی را دربرمی گیرند. نمادهایی که در این بخش ها معرفی شده اند در این فصل توضیح داده می شوند.

در هر عضو سیستم محور آناتمی با مبدا آن در مرکز جرم عضو (COM) تنظیم می شود و معمولا محور y اصلی آن در امتداد محور طولی عضو یا موقعیت اعضا مانند لگن خاصره در طول یک خط ، بوسیله مارکرهای اختصاصی اسکلتی از قبیل PSIS وASIS معیین می شود.

سیستم های محوری موضعی دیگری روی آن عضو که یک مجموعه از مارکرهای سطحی را استفاده میکند، شکل داده می شود.

یک مجموع از دو تبدیل ضروری است تا از GRS به سیستم محور مارکر و از آن مارکر به سیستم محور آناتمی بدست آیند. نمودار 7.1 نشان می دهد که چگونه یکی از این دوران ها انجام می شود . سیستم محور x,y,z نیاز دارد تا نسبت به سیستمی که بوسیله مشخص شده است، دوران کند.

تعداد زیادی توالی دوران ممکن است اما در اینجا ما از توالی متداولx-y-z crdan استفاده می کنیم که این بدین معنی است که ما ابتدا پیرامون محور x و دوم پیرامون محور y جدید و در نهایت پیرامون محور z جدید دوران می کنیم.

اولین دوران پیرامون محور x است ت بدست آید. چون ما پیرامون محور x دوران کرده ایم ، x تغییر نخواهد کرد و در حالی که محور y به y' تغییر می کند و محور zبه z' تغییر می کند.

دوران دوم پیرامون محور جدید است تا بدست آید. چون این دوران پیرامون محور بوده است

آخرین دوران پیرامون محور جدید است تا مطلوب بدست اید.

فرض می کنیم ما یک نقطه با مختصات در سیستم محور اصلی ,y,z x داریم که همان نقطه در سیستم محور مختصات را خواهد داشت.

مبنی بر دوران :

 

با استفاده از نمادگذاری های مختصرسازی در نمادگذاری ماتریکس ، می توانیم ماتریکس را به صورت زیر بنویسیم :

(1-7)

بعد از دوران دوم پیرامون ،این نقطه مختصات را در سیستم محور خواهد داشت.

(2-7)

سرانجام ، سومین دوران پیرامون باعث ایجاد مختصات‌های در سیستم محور می شود.

(3-7)

با جمع کردن معادلات (7.1 ) و (7.2) و (7.3) ما بدست می آوریم.

(4-7)

توجه کنید که ماتریکس ضرب که در معادله (7.4) نشان داده شده است جابجایی پذیر نیست . این بدین معنی است که ترتیب تبدیل ها باید این چنین باشد که ابتدا و دوم و در نهایت انجام شود و یا بعبارت دیگر

 

بسط معادله (7.4) نتیجه می دهد:

(5-1)

7.1.3- توالی های دیگر دوران

در تئوری ، 12 تا توالی صحیح و ممکن دوران وجود دارد . که همه آنها توسط ریاضی دان سویسی Leonhard Euler (1783-1707) نشان داده شده اند. لیست پایین همه توالی های ممکن و صحیح دوران را به ما می دهد. مثالی که در بالا توضیح داده شد عموما به عنوان سیستم cordon منسوب می شود که معمولا در بیومکانیک ها استفاده می شود . توالی دوران z-x-z عموما به عنوان سیستم eulor منسوب می شود و معمولا در مهندسی مکانیک استفاده می شود.

 

 

 

 

 

 

7.2-مارکر و سیستم های محورهای آناتمی

توصیف زیرین ، گام هایی را که برای تبدیل کردن مختصات های مارکر GRS,x,y,zبه محورهای آناتمی اعضای شخصی که شروع به حرکت می کند، ضروری است را خلاصه می کند. نمودار 7.2 ، سیستم های محور را که درگیر شده اند ، را برای یک عضو داده شده که مرکز جرم آن در c و محورهای x-y-z آن مشخص شده است را نشان می دهد. GRSدارای محورهای x-y-zاست که آنها برای هر توالی معیین دوربین ثابت می شوند. سیستم دوم محور سیستم محور مارکر برای هر عضو است و این می تواند از یک آزمایشگاه به آزمایشگاه دیگر تغییر کند . حتی در یک آزمایشگاه معیین ، هر آزمایش می تواند یک ترتیب متفاوت از مارکرها داشته باشد. برای یک آنالیز سه بعدی باید لااقل سه مارکر مستقل برای هر عضو بدن وجود داشته باشد و نباید مارکرهای عمومی بین سیستم های مجاور وجود داشته باشد. مارکرهای هر عضو نباید در یک خط مستقیم واقع شوند بعبارت دیگر آنها نباید در یک خط راست باشند ، آنها باید یک سطح در فضای سه بعدی تشکیل دهند . همچنانکه در نمودار 7.2 نشان داده شده است. سه مارکر ردیابی صفحه مارکر ردیابی را معیین می کنند . این صفحه بنظر می رسد شامل محورهای باشد چنانکه هر سه مارکر در صفحه و ربع دایره واقع هستند .

یک نقطه روی این صفحه مارکر، به طور قراردادی ، به عنوان مبدا سیستم محورهای مارکر انتخاب می شود.

در اینجا انتخاب می شود وischosen m.

آن خط از به محور را معیین می کند: عمود بر صفحه ردیابی است و عمود با صفحه ای که توسط – معیین می شود ، است تا یک سیستم دست راست را تشکیل دهد.

مرحله درجه بندی آناتمی ارتباط بین محورهای مارکر و محورهای آناتمی x-y-z را می یابد. این پروسه به آن subject نیاز دارد تا موقعیت خوش تعریف شده بخود بگیرد : معمولا موقعیت آناتومی استفاده می شود . در این زمان ، مارکرهای درجه بندی باید موقتا روی آن عضو قرار داده شوند تا نقاط آناتومی معروف معیین شوند . برای مثال عضو پا ، سه مارکر می تواند روی سر فیبولا (fibulo) ، غوزک جانبی و در نقطه میانی روی سطح قدامی تیبیا قرار داده شوند .

در طی درجه بندی ، مارکرهای موقتی mc1, mc2می توانند به ترتیب روی غوزک میانی و epicondyle میانی تیبیا قرار داده شوند. با آن subject که تقریبا برای یک ثانیه ثابت و بی حرکت است ، مختصات سه ردیابی و دو مارکر درجه بندی ثبت می شوند و در پایان زمان درجه بندی میانگین گرفته می شود . محور طولی عضو پا (yaxis) تعریف می شود به عنوان آن خط که نقطه میانی بین malleolii جانبی و میانی (mT2,mc1) و نقطه میانی بین سر فیبولا و epicondyle میانی تیبیا (mT3,mc2) را به هم متصل می کند. این نقاط میانی ، بترتیب ، مفصل قوزک و زانو هستند . محور y پا و خط از تا یک صفحه را معیین می کنند که بر محور x پا عمود است . جهت محور z پا به عنوان یک خط قائم به صفحه x-y پا معیین خواهد شد چنان که x-y-z پا یک سیستم واقع در طرف راست است .

محورهای آناتمی ساق پا هم اکنون نسبت به سه مارکر ردیابی معیین می شوند . موقعیت مرکز جرم پا یک فاصله معلوم در طول محور y پا از مفصل قوزک خواهد بود.

بنابراین بردار c از m ، مبدا سیستم محور مارکر ردیابی همچنین معین است . آن دو مارکر درجه بندی هم اکنون انتقال داده می شوند و ---- زیرا تعیین جهت سیستم محوری سه مارکر ردیابی هم اکنون معلوم است و فرض می شود نسبت به محورهای آناتمی معیین ( newly) ثابت باشد.


دانلود با لینک مستقیم


دانلود مقاله درباره سینتیک و سینماتیک سه بعدی

مقاله درباره موتور سه فاز

اختصاصی از فایلکو مقاله درباره موتور سه فاز دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 12

 

موتور الکتریکی

میدان مغناطیسی چرخنده به عنوان مجموعی از بردارهای مغناطیسی کوئل‌های سه‌فازه.یک موتور الکتریکی، الکتریسیته را به حرکت مکانیکی تبدیل می‌کند. عمل عکس آن که تبدیل حرکت مکانیکی به الکتریسیته است، توسط ژنراتور انجام می‌شود. این دو وسیله بجز در عملکرد، مشابه یکدیگر هستند. اکثر موتورهای الکتریکی توسط الکترومغناطیس کار می‌کنند، اما موتورهایی که بر اساس پدیده‌های دیگری نظیر نیروی الکترواستاتیک و اثر پیزوالکتریک کار می‌کنند، هم وجود دارند.

ایده کلی این است که وقتی که یک ماده حامل جریان الکتریسیته تحت اثر یک میدان مغناطیسی قرار می‌گیرد، نیرویی بر روی آن ماده از سوی میدان اعمال می‌شود. در یک موتور استوانه‌ای، چرخانه (روتور) به علت گشتاوری که ناشی از نیرویی است که به فاصله‌ای معین از محور چرخانه به چرخانه اعمال می‌شود، می‌گردد.

اغلب موتورهای الکتریکی دوارند، اما موتور خطی هم وجود دارند. در یک موتور دوار بخش متحرک (که معمولاً درون موتور است) چرخانه و بخش ثابت ایستانه (استاتور) خوانده می‌شود. موتور شامل آهنرباهای الکتریکی است که روی یک قاب سیم پیچی شده است. گر چه این قاب اغلب آرمیچر خوانده می‌شود، اما این واژه عموماً به غلط بکار برده می‌شود. در واقع آرمیچر آن بخش از موتور است که به آن ولتاژ ورودی اعمال می‌شود یا آن بخش از ژنراتور است که در آن ولتاژ خروجی ایجاد می‌شود. با توجه به طراحی ماشین، هر کدام از بخش‌های چرخانه یا ایستانه می‌توانند به عنوان آرمیچر باشند. برای ساختن موتورهایی بسیار ساده کیت هایی را در مدارس استفاده می‌کنند.

== موتورهای Dc

یکی از اولین موتورهای دوار، اگر نگوییم اولین، توسط مایکل فارادی در سال 1821م ساخته شده بود و شامل یک سیم آویخته شده آزاد که در یک ظرف جیوه غوطه‌ور بود، می‌شد. یک آهنربای دائم در وسط ظرف قرار داده شده بود. وقتی که جریانی از سیم عبور می‌کرد، سیم حول آهنربا به گردش در می‌آمد و نشان می‌داد که جریان منجر به افزایش یک میدان مغناطیسی دایره‌ای اطراف سیم می‌شود. این موتور اغلب در کلاسهای فیزیک مدارس نشان داده می‌شود، اما گاهاً بجای ماده سمی جیوه، از آب نمک استفاده می‌شود.

موتور کلاسیک DC دارای آرمیچری از آهنربای الکتریکی است. یک سوییچ گردشی به نام کموتاتور جهت جریان الکتریکی را در هر سیکل دو بار برعکس می کند تا در آرمیچر جریان یابد و آهنرباهای الکتریکی، آهنربای دائمی را در بیرون موتور جذب و دفع کنند. سرعت موتور DC به مجموعه‌ای از ولتاژ و جریان عبوری از سیم پیچهای موتور و بار موتور یا گشتاور ترمزی، بستگی دارد.

سرعت موتور DC وابسته به ولتاژ و گشتاور آن وابسته به جریان است. معمولاً سرعت توسط ولتاژ متغیر یا عبور جریان و با استفاده از تپها (نوعی کلید تغییر دهنده وضعیت سیم‌پیچ) در سیم‌پیچی موتور یا با داشتن یک منبع ولتاژ متغیر، کنترل می‌شود. بدلیل اینکه این نوع از موتور می‌تواند در سرعتهای پایین گشتاوری زیاد ایجاد کند، معمولاً از آن در کاربردهای کششی نظیر لوکوموتیوها استفاده می‌کنند. اما به هرحال در طراحی کلاسیک محدودیتهای متعددی وجود دارد که بسیاری از این محدودیتها ناشی از نیاز به جاروبکهایی برای اتصال به کموتاتور است. سایش جاروبک ها و کموتاتور، ایجاد اصطکاک می‌کند و هر چه که سرعت موتور بالاتر باشد، جاروبکها می‌بایست محکمتر فشار داده شوند تا اتصال خوبی را برقرار کنند. نه تنها این اصطکاک منجر به سر و صدای موتور می‌شود بلکه این امر یک محدودیت بالاتری را روی سرعت ایجاد می‌کند و به این معنی است که جاروبکها نهایتاً از بین رفته نیاز به تعویض پیدا می‌کنند. اتصال ناقص الکتریکی نیز تولید نوفه (نویز) الکتریکی در مدار متصل می‌کند. این مشکلات با جابجا کردن درون موتور با بیرون آن از بین می‌روند، با قرار دادن آهنرباهای دائم در داخل و سیم پیچها در بیرون به یک طراحی بدون جاروبک می‌رسیم.

فهرست مندرجات [مخفی شود]

۱ موتورهای میدان سیم پیچی شده

۲ موتورهای یونیورسال

۳ موتورهای AC

۳.۱ موتورهای AC تک فاز

۳.۲ موتورهای AC سه فاز

۴ موتورهای پله‌ای

۵ موتورهای خطی

۶ منابع

[ویرایش] موتورهای میدان سیم پیچی شده

آهنرباهای دائم در (ایستانه) بیرونی یک موتور DC را می‌توان با آهنرباهای الکتریکی تعویض کرد. با تغییر جریان میدان (سیم پیچی روی آهنربای الکتریکی) می‌توانیم نسبت سرعت/گشتاور موتور را تغییر دهیم. اگر سیم پیچی میدان به صورت سری با سیم پیچی آرمیچر قرار داده شود، یک موتور گشتاور بالای کم سرعت و اگر به صورت موازی قرار داده شود، یک موتور سرعت بالا با گشتاور کم خواهیم داشت. می‌توانیم برای بدست آوردن حتی سرعت بیشتر اما با گشتاور به همان میزان کمتر، جریان میدان را کمتر هم کنیم. این تکنیک برای کشش الکتریکی و بسیاری از کاربردهای مشابه آن ایده‌آل است و کاربرد این تکنیک می‌تواند منجر به حذف تجهیزات یک جعبه دنده متغیر مکانیکی شود.

[ویرایش] موتورهای یونیورسال

یکی از انواع موتورهای DC میدان سیم پیچی شده موتور ینیورسال است. اسم این موتورها از این واقعیت گرفته شده است که این موتورها را می‌توان هم با جریان DC و هم AC بکار برد، اگر چه که اغلب عملاً این موتورها با تغذیه AC کار می‌کنند. اصول کار این موتورها بر این اساس است که وقتی یک موتور DC میدان سیم پیچی شده به جریان متناوب وصل می‌شود، جریان هم در سیم پیچی میدان و هم در سیم پیچی آرمیچر (و در میدانهای مغناطیسی منتجه) هم‌زمان تغییر می‌کند و بنابراین نیروی مکانیکی ایجاد شده همواره بدون تغییر خواهد بود. در عمل موتور بایستی به صورت خاصی طراحی شود تا با جریان AC سازگاری داشته باشد (امپدانس/راکتانس بایستی مدنظر قرار گیرند) و موتور نهایی عموماً دارای کارایی کمتری نسبت به یک موتور معادل DC خالص خواهد بود.

مزیت این موتورها این است که می‌توان تغذیه AC را روی موتورهایی که دارای مشخصه‌های نوعی موتورهای DC هستند بکار برد، خصوصاً اینکه این موتورها دارای گشتاور راه اندازی بسیار بالا و طراحی بسیار جمع و جور در سرعتهای بالا هستند. جنبه منفی این موتورها تعمیر و نگهداری و مشکل قابلیت اطمینان آنهاست که به علت وجود کموتاتور ایجاد می‌شود و در نتیجه این موتورها به ندرت در صنایع مشاهده می‌شوند، اما عمومی‌ترین موتورهای AC در دستگاههایی نظیر مخلوط کن و ابزارهای برقی که گاهاً استفاده می‌شوند، هستند.

[ویرایش] موتورهای AC

[ویرایش] موتورهای AC تک فاز

معمولترین موتور تک فاز موتور هم‌زمان قطب چاکدار است، که اغلب در دستگاه هایی بکار می رود که گشتاور پایین نیاز دارند، نظیر پنکه‌های برقی، تندپزها (اجاقهای ماکروویو) و دیگر لوازم خانگی کوچک. نوع دیگر موتور AC تک فاز موتور القایی است، که اغلب در لوازم بزرگ نظیر ماشین لباسشویی و خشک کن لباس بکار می‌رود. عموماً این موتورها می‌توانند گشتاور راه اندازی بزرگ‌تری را با استفاده از یک سیم پیچ راه انداز به همراه یک خازن راه انداز و یک کلید گریز از مرکز، ایجاد کنند.

هنگام راه اندازی، خازن و سیم پیچ راه اندازی از طریق یک دسته از کنتاکت های تحت فشار فنر روی کلید گریز از مرکز دوار، به منبع برق متصل می‌شوند. خازن به افزایش گشتاور راه اندازی موتور کمک می‌کند. هنگامی که موتور به سرعت نامی رسید، کلید گریز از مرکز فعال شده، دسته کنتاکتها فعال می‌شود، خازن و سیم پیچ راه انداز سری شده را از منبع برق جدا می‌سازد، در این هنگام موتور تنها با سیم پیچ اصلی عمل می‌کند. موتورهای تک فاز از نظر نوع راه اندازی به انواع موتور با فاز شکسته- موتور با خازن موقت -موتور باخازن موقت و خازن دایم-موتور انیورسال -موتور با قطب چاکدار تقسیم بندی میشوند. در میان موتورهای تک فاز موتور انیورسال که در وسایل خانگی مثل جارو برقی -چرخ گوشت کاربرد دارند از گشتاور و سرعت بالایی برخوردار هستند.

[ویرایش] موتورهای AC سه فاز

برای کاربردهای نیازمند به توان بالاتر، از موتورهای القایی سه فاز AC (یا چند فاز) استفاده می‌شود. این موتورها از اختلاف فاز موجود بین فازهای تغذیه چند فاز الکتریکی برای ایجاد یک میدان الکترومغناطیسی دوار درونشان، استفاده می‌کنند. اغلب، روتور شامل تعدادی هادی های مسی است که در فولاد قرار داده شده‌اند. از طریق القای الکترومغناطیسی میدان مغناطیسی دوار در این هادیها القای جریان می‌کند، که در نتیجه


دانلود با لینک مستقیم


مقاله درباره موتور سه فاز