فایلکو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

فایلکو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

ارائه یک الگوریتم اجتماع مورچگان به منظور بهبود در زمان انجام کارها در محیط گرید

اختصاصی از فایلکو ارائه یک الگوریتم اجتماع مورچگان به منظور بهبود در زمان انجام کارها در محیط گرید دانلود با لینک مستقیم و پر سرعت .

ارائه یک الگوریتم اجتماع مورچگان به منظور بهبود در زمان انجام کارها در محیط گرید بصورت ورد ودر77صفحه

چکیده

در این پایان نامه به ارایه یک روش جدید در پردازش شبکه ای با الگوریتم مورچگان پرداخته‌ایم. مدلی که در فضای شبکه ای استفاده کردیم حراج دو طرفه پیوسته می باشد. این مدل ها به دلیل سادگی و پویایی خود امروزه در بسیاری از الگوریتم های مورد استفاده برای کنترل منابع و زمان بندی کارها مورد استفاده قرار می گیرند. بسیاری از این مدل ها در زمان پاسخ گویی خود هنگام مدیریت منابع دچار ضعف می باشند. در مدل حراج, حراج کنندگان قیمت های مورد نظر خریداران را اعلام می کنند و خریداری که قیمت مناسب را اعلام کرده باشد منبع را بدست می گیرد. این مساله خود باعث می شود که زمان پاسخ گویی به دلیل درخواست خریداران افزایش یابد. در این پایان نامه ما روش جدیدی را به وسیله الگوریتم ژنتیک در سناریو حراج دو طرفه ارایه کردیم. در این روش با هوشمند سازی منابع, بسته های درخواست پیشنهادی را به سمتی سوق دادیم هر کدام از این محیط های شبکه ای را می توان به صورت یک سیستم توزیع شده در نظر گرفت که با شبکه های دیگر تعامل ندارد و حجم زیادی از داده را پوشش می دهد. یکی از فواید این روش نسبت به روش کلاسترینگ این است که منابع می تواند از لحاظ جغرافیایی در نقاط پراکنده و به صورت غیر متقارن قرار گیرد. با توجه به توزیع مجموعه های داده، انتخاب مجموعه منابع محاسباتی و منابع حاوی داده باید بطور مناسب صورت پذیرفته به گونه ای که سربار ناشی از انتقال این مجموعه ها روی گرید کمینه شود. در این تحقیق، مساله زمانبندی برنامه های نیازمند داده مورد توجه قرار می گیرد. با توجه به اینکه زمانبندی بهینه مستلزم انتخاب مجموعه منابع مناسب می باشد. در پردازش های شبکه ای ,محیط ها پویا می باشند به این معنا که ممکن است در یک زمان منابع روشن باشد و در زمانی دیگر همان منابع خاموش باشند پیاده سازی های صورت گرفته در نرم افزار شبیه سازی GridSim مورد بررسی قرار گرفت و نتایج نشان داد که این روش جدید باعث بهبود زمان پردازش و کم شدن تعداد مراحل حراج می شود.


دانلود با لینک مستقیم


ارائه یک الگوریتم اجتماع مورچگان به منظور بهبود در زمان انجام کارها در محیط گرید

الگوریتم فوق موازی برای مثلث بندی درون هسته و برون هسته داده بزرگ در E2 و E3

اختصاصی از فایلکو الگوریتم فوق موازی برای مثلث بندی درون هسته و برون هسته داده بزرگ در E2 و E3 دانلود با لینک مستقیم و پر سرعت .

الگوریتم فوق موازی برای مثلث بندی درون هسته و برون هسته داده بزرگ در E2 و E3


الگوریتم فوق موازی برای مثلث بندی درون هسته و برون هسته داده بزرگ در E2 و E3


 


Volume 51, 2015, Pages 2613–2622
ICCS 2015 International Conference On Computational Science

Highly Parallel Algorithm for Large Data

In–Core and Out–Core Triangulation in E2 and E3

 

 

Abstract

A triangulation of points in E2, or a tetrahedronization of points in E3, is used in many applications. It is not necessary to fulfill the Delaunay criteria in all cases. For large data (more then 5 · 107 points),parallel methods are used for the purpose of decreasingrun–time. A new approach for fast, effective and highly parallel CPU and GPU triangulation, or tetrahedronization, of large data sets in E2 or E3 suitable for in–core and out–core memory processing, is proposed. Experimental results proved that the resulting triangulation/tetrahedralization is close to the Delaunay triangulation/tetrahedralization. It also demonstrates the applicability of the methodproposed in applications.

 

Keywords

  • Triangulation;
  • tetrahedronization;
  • parallel computing;
  • GPU & CPU;
  • large data processing

 

        

Procedia Computer Science

 

 

الگوریتم فوق موازی برای مثلث بندی درون هسته و برون هسته داده بزرگ در E2 و E3

 

چکیده

 

یک مثلث بندی از نقاط در E2، یا یک مستطیل بندی از نقاط در E3 در بسیاری از برنامه ها استفاده می شود. لازم نیست در همه موارد معیار دولونه تحقق یابد. برای داده های بزرگ (بیش از 107×5 نقطه)، به منظور کاهش زمان اجرا روشهای موازی استفاده می شود. رویکردی جدید برای مثلث بندی یا مستطیل بندی CPU و GPU سریع، موثر و فوق موازی از داده بزرگ تنظیم شده در E2 یا E3 برای فرآیند حافظه درون هسته یا برون هسته، پیشنهاد شده است. نتایج عملی ثابت کرده است که مثلث بندی یا مستطیل بندی حاصل نزدیک به مثلث بندی یا مستطیل بندی دولونه است. همچنین قابلیت روش پیشنهادی در برنامه ها را نشان می دهد.

 

واژگان کلیدی: مثلث بندی، مستطیل بندی ، پردازش موازی، GPU و CPU، پردازش داده­های بزرگ

 

 

 

  • مقدمه

 

برنامه های امروزی نیاز دارند که مجموعه داده های بزرگ را با استفاده از پردازنده های مختلف با حافظه اشتراکی یعنی پردازش موازی، و یا روی سیستم ها با استفاده از پردازش توزیعی، پردازش کنند. در این مقاله ما رویکرد جدید قابل اجرایی برای مثلث بندی سریع و کارآمد در E2 و E3 (مستطیل بندی) با استفاده از سیستم موازی یا توزیعی واحد پردازش مرکزی (CPU) و یا واحد پردازش تصویر (GPU)، یعنی روی خوشه های محاسباتی، برای مجموعه داده های بزرگ را توصیف می کنیم.

 

الگوریتمهای زیادی برای مثلث بندی در E2 و E3 توسعه یافته اند و با معیارهای مختلف توصیف شده اند [1]، [2]، [5]، [8]؛ اغلب به سبب همزادی با دیاگرامهای وورونوی و خصوصیات ریاضیاتی، مثلث بندی دولونه در E2 استفاده می شود. مثلث بندی دولونه زاویه حداقل را حداکثر می کند؛ در سمت دیگر، زاویه حداکثر را حداقل نمی کند، که در بعضی زمینه ها لازم است، مثل سیستم های CAD و غیره. به علاوه، اگر نقاط یک مش مربع تشکیل دهند، الگوریتمها به دقت عددی محاسبات حساس هستند. به خوبی مشخص شده است که مثلث بندی دولونه (DT) شامل ساده سازی های  است که در آن d بعد دار است. پیچیدگی محاسباتی DT  است یعنی برای 2=d،  است و برای 3=d  می باشد.



 


دانلود با لینک مستقیم


الگوریتم فوق موازی برای مثلث بندی درون هسته و برون هسته داده بزرگ در E2 و E3

برآورد پارامترهای اصلی طراحی تونل با استفاده از الگوریتم تحلیل برگشتی (تونل راه آهن زرقان شیراز)

اختصاصی از فایلکو برآورد پارامترهای اصلی طراحی تونل با استفاده از الگوریتم تحلیل برگشتی (تونل راه آهن زرقان شیراز) دانلود با لینک مستقیم و پر سرعت .

مقاله با عنوان فوق که در سومین کنفرانس مکانیک سنگ ایران ارائه شده است، آماده دانلود می باشد.

محل برگزاری کنفرانس: تهران - دانشگاه صنعتی امیرکبیر

سال برگزاری کنفرانس: ۱۳۸۶

تعداد صفحات مقاله: 6

محتویات فایل: فایل zip حاوی یک pdf

نویسند‌گان:
[ نیما انفرادی ] - دانشجوی کارشناسی ارشد استخراج معدن، دانشگاه صنعتی امیر کبیر
[ کورش شهریار ] - دانشیار دانشکدة مهندسی معدن و متالوژی دانشگاه صنعتی امیر کبیر

چکیده

طراحی و شروع ساخت سازه های زیرزمینی در اکثر موارد تنها با آگاهی تقریبی از پارامترهای ژئومکانیکی توده سنگ که برای تعیین روش ساخت و نیز طرح نگهداری ضروری هستند صورت  می پذیرد . هدف از تحلیل برگشتی جابه جایی های اطراف تونل در طی دوران احداث آن، اصلاح برآوردهای اولیة پارامترهای ژئومکانیکی زمین می باشد . امروزه کامپیوترها توانایی اجرای بسیاری از تحلیل های عددی را دارند، بنابراین زمان کافی برای انجام پروسة تحلیل برگشتی در اختیار می باشد . تحقیقات انجام گرفته برای پیدا کردن مناسب ترین الگوریتم آنالیز برگشتی از میان سه الگوریتم از تکنیک های جستجوی مستقیم بهینه سازی نشان داد که روش تک متغیره و روش تک متغیرة جایگزین، می توانند با موفقیت مقادیر بهینة پارامترها را صرف نظر از مقادیر اولیة آنها جستجو کنند، در حالی که روش جستجوی الگویی، در برخی از موارد با موفقیت همراه نیست . در این مقاله تحلیل برگشتی با استفاده از روش تک متغیره و با کمک داده های ابزاربندی تونل راه آهن زرقان شیراز صورتگرفت . نتایج نشان داد که پارامترهای مدول الاستیسیته E و نسبت تنش افقی به قائم K با مقادیر ارائه شدة آنها توسط شرکت مشاور متفاوت می باشند و مقدار آنها از این تحلیل به ترتیب برابر با 3/6 GPa و 2 به دست آمد .

 


دانلود با لینک مستقیم


برآورد پارامترهای اصلی طراحی تونل با استفاده از الگوریتم تحلیل برگشتی (تونل راه آهن زرقان شیراز)

کد فورترن الگوریتم دو بخشی (Bisection)

اختصاصی از فایلکو کد فورترن الگوریتم دو بخشی (Bisection) دانلود با لینک مستقیم و پر سرعت .

کد فورترن الگوریتم دو بخشی (Bisection)


کد فورترن الگوریتم دو بخشی (Bisection)

کد فورترن الگوریتم دو بخشی (Bisection).

کد برنامه به زبان فورترن 90 نوشته شده است.

کافیست برنامه را Build و سپس Run نمایید.


دانلود با لینک مستقیم


کد فورترن الگوریتم دو بخشی (Bisection)

دانلود مقاله الگوریتم های ژنتیک

اختصاصی از فایلکو دانلود مقاله الگوریتم های ژنتیک دانلود با لینک مستقیم و پر سرعت .

 

 

چکیده
الگوریتم های ژنتیک از اصول انتخاب طبیعی داروین برای یافتن فرمول بهینه جهت پیش بینی یا تطبیق الگو استفاده می کنند.الگوریتم های ژنتیک اغلب گزینه خوبی برای تکنیک های پیش بینی بر مبنای رگرسیون هستند.همان طور ساده،خطی وپارامتری یک گفته می شود،به الگوریتم های ژنتیک می توان غیر پارامتریک گفت.
مختصراً گفته می شود که الگوریتم ژنتیک (یا GA) یک تکنیک برنامه نویسی است که از تکامل ژنتیکی به عنوان یک الگوی حل نمسئله استفاده می کند.مسئله ای که باید حل شود ورودی است و راه حلها طبق یک الگو کد گذاری می شودومتریک که تابع fitness هم نام دارد هر راه حل کاندید را ارزیابی می کندکه اکثر آنها به صورت تصادفی انتخاب می شوند.
کلاً این الگوریتم ها از بخش های زیر تشکیل می شوند :
تابع برازش - نمایش – انتخاب – تغییر
که در ادامه آنها را توضیح خواهیم داد.
مقدمه
هنگامی که لغت تنازع بقا به کار می‌رود اغلب بار ارزشی منفی آن به ذهن می‌آید. شاید همزمان قانون جنگل به ذهن برسد و حکم بقای قوی‌تر!
البته برای آنکه خیالتان راحت شود می‌توانید فکر کنید که همیشه هم قوی‌ترین‌ها برنده نبوده‌اند. مثلا دایناسورها با وجود جثه عظیم و قوی‌تر بودن در طی روندی کاملا طبیعی بازی بقا و ادامه نسل را واگذار کردند در حالی که موجوداتی بسیار ضعیف‌تر از آنها حیات خویش را ادامه دادند. ظاهرا طبیعت بهترین‌ها را تنها بر اساس هیکل انتخاب نمی‌کند! در واقع درست‌تر آنست که بگوییم طبیعت مناسب ترین‌ها (Fittest) را انتخاب می‌کند نه بهترین‌ها.
قانون انتخاب طبیعی بدین صورت است که تنها گونه‌هایی از یک جمعیت ادامه نسل می‌دهند که بهترین خصوصیات را داشته باشند و آنهایی که این خصوصیات را نداشته باشند به تدریج و در طی زمان از بین می‌روند.
مثلا فرض کنید گونه خاصی از افراد، هوش بسیار بیشتری از بقیه افراد یک جامعه یا کولونی دارند. در شرایط کاملا طبیعی این افراد پیشرفت بهتری خواهند کرد و رفاه نسبتا بالاتری خواهند داشت و این رفاه خود باعث طول عمر بیشتر و باروری بهتر خواهد بود(توجه کنید شرایط طبیعیست نه در یک جامعه سطح بالا با ملاحظات امروزی یعنی طول عمر بیشتر در این جامعه نمونه با زاد و ولد بیشتر همراه است). حال اگر این خصوصیت(هوش)ارثی باشد به طبع در نسل بعدی همان جامعه تعداد افراد باهوش به دلیل زاد و ولد بیشتر این‌گونه افراد بیشتر خواهد بود. اگر همین روند را ادامه دهید خواهید دید که در طی نسل‌های متوالی دائما جامعه نمونه ما باهوش و باهوش‌تر می‌شود. بدین ترتیب یک مکانیزم ساده طبیعی توانسته است در طی چند نسل عملا افراد کم هوش را از جامعه حذف کند علاوه بر اینکه میزان هوش متوسط جامعه نیز دائما در حال افزایش است(البته امکان داشت اگر داروین بی‌عرضگی افراد باهوش امروزی را می‌دید کمی در تئوری خود تجدید نظر می‌کرد اما این مسئله دیگریست!).
بدین ترتیب می‌توان دید که طبیعت با بهره‌گیری از یک روش بسیار ساده(حذف تدریجی گونه‌های نامناسب و در عین حال تکثیر بالاتر گونه‌های بهینه) توانسته است دائما هر نسل را از لحاظ خصوصیات مختلف ارتقا بخشد.
البته آنچه در بالا ذکر شد به تنهایی توصیف کننده آنچه واقعا در قالب تکامل در طبیعت اتفاق می‌افتد نیست. بهینه‌سازی و تکامل تدریجی به خودی خود نمی‌تواند طبیعت را در دسترسی به بهترین نمونه‌ها یاری دهد. اجازه دهید تا این مساله را با یک مثال شرح دهیم.
پس از اختراع اتومبیل به تدریج و در طی سال‌ها اتومبیل‌های بهتری با سرعت‌های بالاتر و قابلیت‌های بیشتر نسبت به نمونه‌های اولیه تولید شدند. طبیعیست که این نمونه‌های متاخر حاصل تلاش مهندسان طراح جهت بهینه‌سازی طراحی‌های قبلی بوده اند. اما دقت کنید که بهینه‌سازی یک اتومبیل تنها یک "اتومبیل بهتر" را نتیجه می‌دهد.
اما آیا می‌توان گفت اختراع هواپیما نتیجه همین تلاش بوده است؟ یا فرضا می‌توان گفت فضا پیماها حاصل بهینه‌سازی طرح اولیه هواپیماها بوده‌اند؟
پاسخ اینست که گرچه اختراع هواپیما قطعا تحت تاثیر دستاورهای صنعت اتومبیل بوده است اما به‌هیچ وجه نمی‌توان گفت که هواپیما صرفا حاصل بهینه‌سازی اتومبیل و یا فضا پیما حاصل بهینه‌سازی هواپیماست. در طبیعت هم عینا همین روند حکم‌فرماست. گونه‌های متکامل‌تری وجود دارند که نمی‌توان گفت صرفا حاصل تکامل تدریجی گونه قبلی هستند.
در این میان آنچه شاید بتواند تا حدودی ما را در فهم این مساله یاری کند مفهومیست به نام : تصادف یا جهش.
به عبارتی طرح هواپیما نسبت به طرح اتومبیل یک جهش بود و نه یک حرکت تدریجی. در طبیعت نیز به همین گونه‌است. در هر نسل جدید بعضی از خصوصیات به صورتی کاملا تصادفی تغییر می‌یابند سپس بر اثر تکامل تدریجی که پیشتر توضیح دادیم در صورتی که این خصوصیت تصادفی شرایط طبیعت را ارضا کند حفظ می‌شود در غیر این‌صورت به شکل اتوماتیک از چرخه طبیعت حذف می‌گردد.
در واقع می‌توان تکامل طبیعی را به این‌صورت خلاصه کرد: جست‌وجوی کورکورانه(تصادف یا Blind Search)+ بقای قوی‌تر.
حال ببینیم که رابطه تکامل طبیعی با روش‌های هوش مصنوعی چیست .هدف اصلی روش‌های هوشمند به کار گرفته شده در هوش مصنوعی یافتن پاسخ بهینه مسائل مهندسی ست. بعنوان مثال اینکه چگونه یک موتور را طراحی کنیم تا بهترین بازدهی را داشته باشد یا چگونه بازوهای یک ربات را محرک کنیم تا کوتاه‌ترین مسیر را تا مقصد طی کند(دقت کنید که در صورت وجود مانع یافتن کوتاه‌ترین مسیر دیگر به سادگی کشیدن یک خط راست بین مبدا و مقصد نیست) همگی مسائل بهینه‌سازی هستند.
روش‌های کلاسیک ریاضیات دارای دو اشکال اساسی هستند. اغلب این روش‌ها نقطه بهینه محلی(Local Optima) را بعنوان نقطه بهینه کلی در نظر می‌گیرند و نیز هر یک از این روش‌ها تنها برای مساله خاصی کاربرد دارند. این دو نکته را با مثال‌های ساده‌ای روشن می‌کنیم.
به شکل زیر توجه کنید. این منحنی دارای دو نقطه ماکزیمم می‌باشد. که یکی از آنها تنها ماکزیمم محلی است. حال اگر از روش‌های بهینه‌سازی ریاضی استفاده کنیم مجبوریم تا در یک بازه بسیار کوچک مقدار ماکزیمم تابع را بیابیم. مثلا از نقطه 1 شروع کنیم و تابع را ماکزیمم کنیم. بدیهی است اگر از نقطه 1 شروع کنیم تنها به مقدار ماکزیمم محلی دست خواهیم یافت و الگوریتم ما پس از آن متوقف خواهد شد. اما در روش‌های هوشمند خاصه الگوریتم ژنتیک بدلیل خصلت تصادفی آنها حتی اگر هم از نقطه 1 شروع کنیم باز ممکن است در میان راه نقطه A به صورت تصادفی انتخاب شود که در این صورت ما شانس دست‌یابی به نقطه بهینه کلی (Global Optima) را خواهیم داشت.
در مورد نکته دوم باید بگوییم که روش‌های ریاضی بهینه‌سازی اغلب منجر به یک فرمول یا دستورالعمل خاص برای حل هر مسئله می‌شوند. در حالی که روش‌های هوشمند دستورالعمل‌هایی هستند که به صورت کلی می‌توانند در حل هر مسئله‌ای به کار گرفته شوند. این نکته را پس از آشنایی با خود الگوریتم بیشتر و بهتر خواهید دید. [1]

 

الگوریتم ژنتیک چیست؟
الگوریتم های ژنتیک از اصول انتخاب طبیعی داروین برای یافتن فرمول بهینه جهت پیش بینی یا تطبیق الگو استفاده می کنند.الگوریتم های ژنتیک اغلب گزینه خوبی برای تکنیک های پیش بینی بر مبنای رگرسیون هستند.همان طور ساده،خطی وپارامتریک گفته می شود،به الگوریتم های ژنتیک می توان غیر پارامتریک گفت.
برای مثال اگر بخواهیم نوسانات قیمت نفت را با استفاده از عوامل خارجی وارزش رگرسیون خطی ساده مدل کنیم،این فرمول را تولید خواهیم کرد:قیمت نفت در زمان t=ضریب 1 نرخ بهره در زمان t+ضریب 2 نرخ بیکاری در زمان t+ثابت 1 . سپس از یک معیار برای پیدا کردن بهترین مجموعه ضرایب و ثابت ها جهت مدل کردن قیمت نفت استفاده خواهیم کرد.در این روش 2 نکته اساسی وجود دارد.اول این روش خطی است و مسئله دوم این است که ما به جای اینکه در میان "فضای پارامترها"جستجو کنیم ،پارامترهای مورد استفاده را مشخص کرده ایم.
با استفاده از الگوریتم های ژنتیک ما یک ابر فرمول یا طرح تنظیم می کنیم که چیزی شبیه"قیمت نفت در زمان t تابعی از حداکثر 4 متغیر است"را بیان می کند. سپس داده هایی برای گروهی از متغیرهای مختلف،شاید در حدود 20 متغیر فراهم خواهیم کرد.سپس الگوریتم ژنتیک اجرا خواهد شد که بهترین تابع و متغیرها را مورد جستجو قرار می دهد.روش کار الگوریتم ژنتیک به طور فریبنده ای ساده،خیلی قابل درک وبه طور قابل ملاحظه ای روشی است که ما معتقدیم حیوانات آنگونه تکامل یافته اند.هر فرمولی که از طرح داده شده بالا تبعیت کند فردی از جمعیت فرمول های ممکن تلقی می شود خیلی شبیه به این که بگوییم جرج بوش فردی از جمعیت انسان های ممکن است.
متغیر هایی که هر فرمول داده شده را مشخص می کنند به عنوان یکسری از اعداد نشان داده شده اند که معادل دی ان ای آن فرد را تشکیل می دهند.
موتور الگوریتم ژنتیک یک جمعیت آغاز از فرمول ایجاد می کند.هر فرد در برابر مجموعه ای از داده ها ی مورد آزمایش قرار می گیرند و مناسبترین آنها شاید 10 درصد از مناسبترین ها باقی می مانند.بقیه کنار گذاشته می شوند. مناسبترین افراد با هم جفتگیری (جابجایی عناصر دی ان ای)وتغییر(تغییر تصادفی عناصر دی ان ای) کرده اند.مشاهده می شود که با گذشت از میان تعدد ریادی از نسلها،الگوریتم ژنتیک به سمت ایجاد فرمول هایی که بیشتر دقیق هستند،میل می کنند.در حالی که شبکه های عصبی هم غیر خطی و غیر پارامتریک هستند،جذابیت زیاد الگوریتم های ژنتیک این است نتایج نهایی قابل ملاحظه ترند.فرمول نهایی برای کاربر انسانی قابل مشاهده خواهد بود،و برای ارائه سطح اطمینان نتایج می توان تکنیک های آماری متعارف رابر روی این فرمول ها اعمال کرد.فناوری الگوریتم های ژنتیک همواره در حال بهبود استفبرای مثال با مطرح کردن معادله ویروس ها که در کنار فرمول ها وبرای نقض کردن فرمول ها ی ضعیف تولید می شوندودر نتیجه جمعیت را کلاً قویتر می سازند.[1]
مختصراً گفته می شود که الگوریتم ژنتیک (یا GA) یک تکنیک برنامه نویسی است که از تکامل ژنتیکی به عنوان یک الگوی حل مسئله استفاده می کند.مسئله ای که باید حل شود ورودی است و راه حلها طبق یک الگو کد گذاری می شودومتریک که تابع fitness هم نام دارد هر راه حل کاندید را ارزیابی می کندکه اکثر آنها به صورت تصادفی انتخاب می شوند.[3]
الگوریتم ژنتیک GA یک تکنیک جستجو در علم کامپیوتربرای یافتن راه حل بهینه ومسائل جستجو است.الگوریتم های ژنتیک یکی از انواع الگوریتم های تکاملی اند که از علم زیست شناسی مثل وراثت، جهش،انتخاب ناگهانی ، انتخاب طبیعی و ترکیب الهام گرفته شده .[2]
عموماً راه حلها به صورت 2 تایی 0و1 نشان داده می شوند ولی روشهای نمایش دیگری هم وجود دارد.تکامل از یک مجموعه کاملاً تصادفی از موجودیت ها شروع می شود و در نسلهای بعدی تکرار می شود.در هر نسل،مناسبترین ها انتخاب می شوند نه بهترین ها.
یک راه حل برای مسئله مورد نظر،با یک لیست از پارامترها نشان داده می شود که به آنها کروموزوم یا ژنوم می گویند.کروموزوم ها عموماً به صورت یک رشته ساده از داده ها نمایش داده می شوند،البته انواع ساختمان داده های دیگر هم می توانند مورد استفاده قرار گیرند.در ابتدا چندین مشخصه به صورت تصادفی برای ایجاد نسل اول تولید می شوند. در طول هر نسل ،هر مشخصه ارزیابی می شود وارزش تناسب(fitness) توسط تابع تناسب اندازه گیری می شود.
گام بعدی ایجاد دومین نسل از جامعه است که بر پایه فرآیندهای انتخاب ،تولید از روی مشخصه های انتخاب شده با عملگرهای ژنتیکی است:اتصال کروموزوم ها به سر یکدیگر و تغییر.
برای هر فرد ،یک جفت والد انتخاب می شود.انتخابها به گونه ای اند که مناسبترین عناصر انتخاب شوند تا حتی ضعیفترین عناصر هم شانس انتخاب داشته باشند تا از نزدیک شدن به جواب محلی جلوگیری شود.چندین الگوی انتخاب وجود دارد: چرخ منگنه دار(رولت)،انتخاب مسابقه ای (Tournament) ،... .
معمولاً الگوریتم های ژنتیک یک عدد احتمال اتصال دارد که بین 0.6و1 است که احتمال به وجود آمدن فرزند را نشان می دهد.ارگانیسم ها با این احتمال با هم دوباره با هم ترکیب می شوند.اتصال 2 کروموزوم فرزند ایجاد می کند،که به نسل بعدی اضافه می شوند.این کارها انجام می شوند تا این که کاندیدهای مناسبی برای جواب،در نسل بعدی پیدا شوند. مرحله بعدی تغییر دادن فرزندان جدید است.الگوریتم های ژنتیک یک احتمال تغییر کوچک وثابت دارند که معمولاً درجه ای در حدود 0.01 یا کمتر دارد. بر اساس این احتمال ،کروموزوم های فرزند به طور تصادفی تغییر می کنند یا جهش می یابند.مخصوصاً با جهش بیتها در کروموزوم ساختمان داده مان.
این فرآیند باعث به وجود آمدن نسل جدیدی از کروموزوم ها یی می شود، که با نسل قبلی متفاوت است.کل فرآیند برای نسل بعدی هم تکرار می شود،جفتها برای ترکیب انتخاب می شوند،جمعیت نسل سوم به وجود می آیندو... .
این فرآیند تکرار می شود تا این که به آخرین مرحله برسیم.
شرایط خاتمه الگوریتم های ژنتیک عبارتند از:
• به تعداد ثابتی از نسل ها برسیم .
• بودجه اختصاص داده شده تمام شود(زمان محاسبه/پول).
• یک فرد(فرزند تولید شده) پیدا شود که مینیمم (کمترین)ملاک را برآورده کند.
• بیشترین درجه برازش فرزندان حاصل شود یا دیگر نتایج بهتری حاصل نشود.
• بازرسی دستی.
• ترکیبهای بالا.
ایده اصلی
در دهه هفتاد میلادی دانشمندی از دانشگاه میشیگان به نام جان هلند ایده استفاده از الگوریتم ژنتیک را در بهینه‌سازی‌های مهندسی مطرح کرد. ایده اساسی این الگوریتم انتقال خصوصیات موروثی توسط ژن‌هاست. فرض کنید مجموعه خصوصیات انسان توسط کروموزوم‌های او به نسل بعدی منتقل می‌شوند. هر ژن در این کروموزوم‌ها نماینده یک خصوصیت است. بعنوان مثال ژن 1 می‌تواند رنگ چشم باشد ، ژن 2 طول قد، ژن 3 رنگ مو و الی آخر. حال اگر این کروموزوم به تمامی، به نسل بعد انتقال یابد، تمامی خصوصیات نسل بعدی شبیه به خصوصیات نسل قبل خواهد بود. بدیهیست که در عمل چنین اتفاقی رخ نمی‌دهد. در واقع بصورت همزمان دو اتفاق برای کروموزوم‌ها می‌افتد. اتفاق اول موتاسیون (Mutation) است. موتاسیون به این صورت است که بعضی ژن‌ها بصورت کاملا تصادفی تغییر می‌کنند. البته تعداد این گونه ژن‌ها بسیار کم می‌باشد اما در هر حال این تغییر تصادفی همانگونه که پیشتر دیدیم بسیار مهم است. مثلا ژن رنگ چشم می‌تواند بصورت تصادفی باعث شود تا در نسل بعدی یک نفر دارای چشمان سبز باشد. در حالی که تمامی نسل قبل دارای چشم قهوه‌ای بوده‌اند. علاوه بر موتاسیون اتفاق دیگری که می‌افتد و البته این اتفاق به تعداد بسیار بیشتری نسبت به موتاسیون رخ می‌دهد چسبیدن ابتدای یک کروموزوم به انتهای یک کروموزوم دیگر است. این مساله با نام Crossover شناخته می‌شود. این همان چیزیست که مثلا باعث می‌شود تا فرزند تعدادی از خصوصیات پدر و تعدادی از خصوصیات مادر را با هم به ارث ببرد و از شبیه شدن تام فرزند به تنها یکی از والدین جلوگیری می‌کند.[1]
در ابتدا تعداد مشخصی از ورودی ها،X1,X2,…,Xn که متعلق به فضای نمونه X هستند را انتخاب می کنیم و آنها را در یک عدد بردای X=(x1,x2,…xn) نمایش می دهیم..در مهندسی نرم افزار اصطلاحاً به آنها ارگانیسم یا کروموزوم گفته می شود.به گروه کروموزوم ها Colony یا جمعیت می گوییم.در هر دوره Colony رشد می کند و بر اساس قوانین مشخصی که حاکی از تکامل زیستی است تکامل می یابند.
برای هر کروموزوم Xi ،ما یک ارزش تناسب(Fitness) داریم که آن را f(Xi) هم می نامیم.عناصر قویتر یا کروموزوم هایی که ارزش تناسب آنها به بهینه Colony نزدیکتر است شانس بیشتری برای زنده ماندن در طول دوره های دیگر و دوباره تولید شدن را دارند و ضعیفترها محکوم به نابودی اند. به عبارت دیگر الگوریتم ورودی هایی که به جواب بهینه نزدیکترندرانگه داشته واز بقیه صرف نظر می کند.
یک گام مهم دیگر درالگوریتم،تولد است که در هر دوره یکبار اتفاق می افتد. محتویات دو کروموزومی که در فرآیند تولید شرکت می کنند با هم ترکیب میشوند تا 2 کروموزوم جدید که ما انها را فرزند می نامیم ایجاد کنند.این هیوریستیک به ما اجازه می دهد تا 2 تا از بهترین ها را برای ایجاد یکی بهتر از آنها با هم ترکیب کنیم.(evolution) به علاوه در طول هر دوره،یک سری از کروموزوم ها ممکن است جهش یابند[6](Mutation) .
الگوریتم
هر ورودی x در یک عدد برداری X=(x1,x2,..,xn) قرار دارد .برای اجرای الگوریتم ژنتیک مان باید هر ورودی را به یک کروموزوم تبدیل کنیم.می توانیم این را با داشتن log(n) بیت برای هر عنصرو تبدیل ارزش Xi انجام دهیم مثل شکل زیر .
0111111 ... 1010111 1111011

 

 

 

می توانیم از هر روش کد کردن برای اعداد استفاده کنیم.در دوره 0، یک دسته از ورودی های X را به صورت تصادفی انتخالب می کنیم.بعد برای هر دوره iام ما ارزش مقدار Fitness را تولید،تغییر وانتخاب را اعمال می کنیم.الگوریتم وقتی پایان می یابد که به معیارمان برسیم.

 

 

 


[6]
سود و کد :

 

Choose initial population
Repeat
Evaluate the individual fit nesses of a certain proportion of the population
Select pairs of best-ranking individuals to reproduce
Apply crossover operator
Apply mutation operator
Until terminating condition
[2]

[5]
روش های نمایش
قبل از این که یک الگوریتم ژنتیک برای یک مسئله اجرا شود،یک روش برای کد کردن ژنوم ها به زبان کامپیوتر باید به کار رود. یکی از روش های معمول کد کردن به صورت رشته های باینری است:رشته های 0و1. یک راه حل مشابه دیگر کدکردن راه حل ها در آرایه ای از اعداد صحیح یا اعشاری است ،که دوباره هر جایگاه یک جنبه از ویژگی ها را نشان می دهد.این راه حل در مقایسه با قبلی پیچیده تر و مشکل تر است. مثلاً این روش توسط استفان کرمر،برای حدس ساختار 3 بعدی یک پروتئین موجود در آمینو اسید ها استفاده شد.الگوریتم های ژنتیکی که برای آموزش شبکه های عصبی استفاده می شوند،از این روش بهره می گیرند.
سومین روش برای نمایش صفات در یک GA یک رشته از حروف است،که هر حرف دوباره نمایش دهنده یک خصوصیت از راه حل است.
خاصیت هر 3تای این روشها این است که آنها تعریف سازنده ایی را که تغییرات تصادفی در آنها ایجاد می کنند را آسان می کنند:0را به 1 وبرعکس،اضافه یا کم کردن ارزش یک عدد یا تبدیل یک حرف به حرف دیگر.
یک روش دیگر که توسط John Koza توسعه یافت،برنامه نویسی ژنتیک (Genetic programming)است.که برنامه ها را به عنوان شاخه های داده در ساختار درخت نشان می دهد.در این روش تغییرات تصادفی می توانند با عوض کردن عملگرها یا تغییر دادن ارزش یک گره داده شده در درخت،یا عوض کردن یک زیر درخت با دیگری به وجود آیند.

روش های انتخاب
روش های مختلفی برای الگوریتم های ژنتیک وجود دارند که می توان برای انتخاب ژنوم ها از آنها استفاده کرد.اما روش های لیست شده در پایین از معمولترین روش ها هستند.
انتخاب Elitist :مناسبترین عضو هر اجتماع انتخاب می شود.
انتخاب Roulette : یک روش انتخاب است که در آن عنصری که عدد برازش(تناسب)بیشتری داشته باشد،انتخاب می شود.
انتخاب Scaling :به موازات افزایش متوسط عدد برازش جامعه،سنگینی انتخاب هم بیشتر می شودوجزئی تر.این روش وقتی کاربرد دارد که مجموعه دارای عناصری باشد که عدد برازش بزرگی دارند وفقط تفاوت های کوچکی آنها را از هم تفکیک می کند.
انتخاب Tournament : یک زیر مجموعه از صفات یک جامعه انتخاب می شوندواعضای آن مجموعه با هم رقابت می کنندو سرانجام فقط یک صفت از هر زیر گروه برای تولید انتخاب می شوند.
بعضی از روشهای دیگر عبارتند از:Rank Selection, Generational Selection, Steady-State Selection .Hierarchical Selection
روش های تغییر
وقتی با روش های انتخاب کروموزوم ها انتخاب شدند،باید به طور تصادفی برای افزایش تناسبشان اصلاح شوند.2 راه حل اساسی برای این کار وجود دارد.اولین وساده ترین جهش (Mutation) نامیده می شود.درست مثل جهش در موجودات زنده که عبارت است از تغییر یک ژن به دیگری، در الگوریتم ژنتیک جهش تغییر کوچکی در یک نقطه از کد خصوصیات ایجاد می کند.
دومین روش Crossover نام دارد و 2 کروموزوم برای معاوضه سگمنتهای کدشان انتخاب می شوند.این فرآیند بر اساس فرآیند ترکیب کروموزوم ها در طول تولید مثل در موجودات زنده شبیه سازی شده. اغلب روش های معمول Crossover شامل Single-point Crossoverهستند ، که نقطه تعویض در جایی تصادفی بین ژنوم ها است.بخش اول قبل از نقطه ،و بخش دوم سگمنت بعد از آن ادامه پیدا می کند،که هر قسمت برگرفته از یک والد است،که 50/50 انتخاب شده.


شکل های بالا تاثیر هر یک از عملگر های ژنتیک را روی کروموزوم های 8 بیتی نشان می دهد. شکل بالاتر 2 ژنوم را نشان می دهد که نقطه تعویض بین 5امین و 6امین مکان در ژنوم قرار گرفته،ایجاد یک ژنوم جدید از پیوند این 2 والد بدست می آیند.شکل 2وم ژنومی را نشان می دهد که دچار جهش شده و 0 در آن مکان به 1 تبدیل شده .
تقاط قوت الگوریتم های ژنتیک
اولین و مهمترین نقطه قوت این الگوریتم ها این است که الگوریتم های ژنتیک ذاتاً موازی اند .اکثر الگوریتم های دیگر موازی نیستند و فقط می توانند فضای مسئله مورد نظر را در یک جهت در یک لحظه جستجو کنند واگر راه حل پیدا شده یک جواب بهینه محلی باشدویا زیر مجموعه ای از جواب اصلی باشد باید تمام کارهایی که تا به حال انجام شده را کنار گذاشت ودوباره از اول شروع کرد.از آنجایی که الگوریتم ژنتیک چندین نقطه شروع دارد،در یک لحظه می تواند فضای مسئله را از چندجهت مختلف جستجو کند. اگر یکی به نتیجه نرسید سایر راه ها ادامه می یابند و منابع بیشتری را در اختیار شان قرار می گیرد.در نظر بگیرید: همه 8 عدد رشته باینری یک فضای جستجو را تشکیل می دهند،که می تواند به صورت ******** نشان داده شود.رشته 01101010 یکی از اعضای این فضاست.همچنین عضوی از فضاهای *******0و******01و0 ******0و*1*1*1*0و 0**01*01 والی آخر باشد.
به دلیل موازی بودن واین که چندین رشته در یک لحظه مورد ارزیابی قرار می گیرند GA ها برای مسائلی که فضای راه حل بزرگی دارند بسیار مفید است .اکثر مسائلی که این گونه اند به عنوان "غیر خطی" شناخته شده اند.در یک مسئله خطی،Fitness هر عنصر مستقل است،پس هر تغییری در یک قسمت بر تغییر وپیشرفت کل سیستم تاثیر مستقیم دارد.می دانیم که تعداد کمی از مسائل دنیای واقعی به صورت خطی اند.در مسائل غیر خطی تغییر در یک قسمت ممکن است تاثیری ناهماهنگ بر کل سیستم ویا تغییر در چند عنصر تاثیر فراوانی بر سیستم بگذارد. خوشبختانه موازی بودن GA باعث حل این مسئله می شود ودر مدت کمی مشکل حل می شود.مثلاً برای حل یک مسئله خطی 1000 رقمی 2000 امکان حل وجود دارد ولی برای یک غیر خطی 1000 رقمی 21000 امکان .
یکی از نقاط قوت الگوریتم های ژنتیک که در ابتدا یک کمبود به نظر می رسد این است که :GA ها هیچ چیزی در مورد مسائلی که حل می کنند نمی دانندو اصطلاحاً به آنهاBlind Watchmakers می گوییم . آنها تغییرات تصادفی را در راه حل های کاندیدشان می دهند وسپس از تابع برازش برای سنجش این که آیا آن تغییرات پیشرفتی ایجاد کرده اند یا نه، استفاده می کنند.مزیت این تکنیک این است که به GA اجازه می دهند یا با ذهنی باز شروع به حل کنند.از آنجایی که تصمیمات آن اساساً تصادفی است،بر اساس تئوری همه راه حلهای ممکن به روی مسئله باز است،ولی مسائلی که محدود به اطلاعات هستند باید از راه قیاس تصمیم بگیرند ودر این صورت بسیاری از راه حلهای نو وجدید را از دست می دهند.
یکی دیگر از مزایای الگوریتم ژنتیک این است که آنها می توانند چندین پارامتر را همزمان تغییردهند.بسیاری ازمسائل واقعی نمی توانند محدود به یک ویژگی شوند تا آن ویژگی ماکسیمم شود یا مینیمم و باید چند جانبه در نظر گرفته شوند.GAها در حل این گونه مسائل بسیار مفیدند،و در حقیقت قابلیت موازی کار کردن آنها این خاصیت را به آنها می بخشد.و ممکن است برای یک مسئله 2 یا چند راه حل پیدا شود،که هر کدام با در نظر گرفتن یک پارامتر خاص به جواب رسیده اند.
محدودیتهای GAها
یک مشکل چگونگی نوشتن عملگر Fitness است که منجر به بهترین راه حل برای مسئله شود.اگر این کارکرد برازش به خوبی و قوی انتخاب نشود ممکن است باعث شود که راه حلی برای مسئله پیدا نکنیم یا مسئله ای دیگر را به اشتباه حل کنیم. به علاوه برای انتخاب تابع مناسب برای Fitness ،پارامترهای دیگری مثل اندازه جمعیت،نرخ جهش وCrossover ،قدرت ونوع انتخاب هم باید مورد توجه قرار گیرند.
مشکل دیگر،که آن را نارس می نامیم این است که اگر یک ژنوم که فاصله اش با سایر ژنوم های نسل اش زیاد باشد(خیلی بهتر از بقیه باشد)و خیلی زود دیده شود(ایجاد شود)ممکن است محدودیت ایجاد کند و راه حل را به سوی جواب بهینه محلی سوق دهد.این اتفاق معمولاً در جمعیت های کم اتفاق می افتد.روش های Rank ,Scaling tournament selection بر این مشکل غلبه می کنند.[3]
چند نمونه از کاربرد های الگوریتم های ژنتیک
نرم‌افزار شناسایی چهره با استفاده از تصویر ثبت شده به همت مبتکران ایرانی طراحی و ساخته شد. در این روش، شناسایی چهره براساس فاصله اجزای چهره و ویژگی‌های محلی و هندسی صورت می‌گیرد که تغییرات ناشی از گیم، تغییرات نور و افزایش سن کمتین تأثیر را خواهد داشت.

 

 

فرمت این مقاله به صورت Word و با قابلیت ویرایش میباشد

تعداد صفحات این مقاله  19  صفحه

پس از پرداخت ، میتوانید مقاله را به صورت انلاین دانلود کنید


دانلود با لینک مستقیم


دانلود مقاله الگوریتم های ژنتیک