لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 8
نگاه اجمالی
در ترمودینامیک فقط با متغیرهای ماکروسکوپیک ، مانند فشار و دما و حجم سر و کار داریم. قوانین اصلی ترمودینامیکها بر حسب چنین کمیتهایی بیان میشوند. ابدا درباره این امر که ماده از اتمها ساخته شده است صحبتی نمیکنند. لیکن مکانیک آماری ، که با همان حیطهای از علم سر و کار دارد که ترمودینامیک از آن بحث میکند و وجود اتمها را از پیش مفروض میداند. قوانین اصلی مکانیک آماری حامی قوانین مکانیکاند که در حدود اتمهای تشکیل دهنده سیسنم بکار میروند.
تاریخچه
نظریه جنبشی توسط رابرت بویل (Rabert Boyle) (1627 – 1691) ، دانیل بونولی (1700 – 1782) ، جیمز ژول (1818 – 1889) ، کرونیگ (1822 – 1874) ، رودولف کلاوسیوس (1822 – 1888) و کلرک ماکسول ( 1831 – 1879 ) و عدهای دیگر تکوین یافته است. در اینجا نظریه جنبشی را فقط در مورد گازها بکار میبریم، زیرا برهم کنشهای بین اتمها ، در گازها به مراتب متغیرترند تا در مایعات. و این امر مشکلات ریاضی را خیلی آسانتر میکند.
در سطح دیگر میتوان قوانین مکانیک را بطور آماری و با استفاده از روشهایی که صوریتر و انتزاعیتر از روشهای نظریه جنبشی هستند بکار برد. این رهیافت که توسط جی ویلارد گیبس (J.willard Gibbs) و لودویگ بولتز مانی (Ludwig Boltz manni) (1844 – 1906) و دیگران تکامل یافته است، مکانیک آماری نامیده میشود، که نظریه جنبشی را به عنوان یکی از شاخههای فرعی در بر میگیرد. با استفاده از این روشها میتوان قوانین ترمودینامیک را به دست آورد. بدین ترتیب معلوم میشود که ترمودینامیک شاخهای از علم مکانیک است.
محاسبه فشار بر پایه نظریه جنبشی
فشار یک گاز ایدهآل را با استفاده از نظریه جنبشی محاسبه میکنند. برای ساده کردن مطلب ، گازی را در یک ظرف مکعب شکل با دیوارههای کاملا کشسان در نظر میگیریم. فرض میکنیم طول هر ضلع مکعب L باشد. سطحهای عمود بر محور X را که مساحت هر کدام e2 است. A1 و A2 مینامیم. مولکولی را در نظر میگیریم که دارای سرعت V باشد. سرعت V را میتوان در راستای یالهای مولفههای Vx و Vy و Vz تجزیه کرد. اگر این ذره با A1 برخورد کند در بازگشت مولفه X سرعت آن معکوس می شود. این برخورد اثری رو ی مولفه Vy و یا Vy ندارد در نتیجه متغیر اندازه حرکت عبارت خواهد بود :
(m Vx - m Vx) = 2 m Vx - )= اندازه حرکت اولیه – اندازه حرکت نهایی
که بر A1 عمود است. بنابراین اندازه حرکتی e به A1 داده میشود برابر با m Vx2 خواهد بود زیرا اندازه حرکت کل پایسته است.
زمان لازم برای طی کردن مکعب برابر خواهد بود با Vx/L. در A2 دوباره مولفه y سرعت معکوس میشود و ذره به طرف A1 باز میگردد. با این فرض که در این میان برخوردی صورت نمیگیرد مدت رفت و برگشت برابر با 2 e Vx خواهد بود. به طوری که آهنگ انتقال اندازه حرکت از ذره به A1 عبارت است: mVx2/e = Vx/2e . 2 mVx ، برای به دست آوردن نیروی کل وارد بر سطح A1 ، یعنی آهنگ انتقال اندازه حرکتی از طرف تمام مولکولهای گاز به A1 داده میشود.
(P = M/e(Vx12 + Vx22 + Vx32 P = 1/2eV2
تعبیر دما از دیدگاه نظریه جنبشی
با توجه به فرمول RT 2/3 = 1/2 MV2 یعنی انرژی کل انتقال هر مول از مولکولهای یک گاز ایدهآل ، با دما متناسب است. میتوان گفت که این نتیجه با توجه به معادله بالا برای جور در آمدن نظریه جنبشی با معادله حالت یک گاز ایدهآل لازم است. و یا اینکه میتوان معادله بالا را به عنوان تعریفی از دما بر پایه نظریه جنبشی یا بر مبنای میکروسکوبیک در نظر گرفت. هر دو مورد بینشی از مفهوم دمای گاز به ما میدهد. دمای یک گاز مربوط است به انرژی جنبشی انتقال کل نسبت به مرکز جرم گاز اندازه گیری میشود. انرژی جنبشی مربوط به حرکت مرکز جرم گاز ربطی به دمای گاز ندارد.
حرکت کاتورهای را به عنوان بخشی از تعریف آماری یک گاز ایدهآل در نظر گرفت. V2 را بر این اساس میتوان محاسبه کرد. در یک توزیع کاتورهای سرعتهای مولکولی ، مرکز جرم در حال سکون خواهد بود. بنابراین ما باید چارچوب مرجعی را بکار ببریم که در آن مرکز جرم گاز در حال سکون باشد. در چارچوبهای دیگر ، سرعت هر یک از مولکولها به اندازه U (سرعت مرکز جرم در آن چارچوب) از سرعت آنها در چارچوب مرکز جرم بیشتر است. در اینصورت حرکتها دیگر کترهای نخواهد بود و برای V2 مقادیر متفاوتی بدست میآید. پس دمای گاز داخل یک ظرف در یک قطار متحرک افزایش مییابد. میدانیم که M V2 1/2 میانگین انرژی جنبشی انتقالی هر مولکول است. این کمیت در یک دمای معین که در این مورد صفر درجه سلسیوس است، برای همه گازها مقدار تقریبا یکسانی دارد. پس نتیجه میگیریم که در دمای T ، نسبت جذر میانگین مربعی سرعتهای مولکولهای دو گاز مختلف مساوی است با ریشه دمای عکس نسبت به مربعهای آنها.
T=2/3k m1 V12/2= 2/3k m2 V22/2
مسافت آزاد میانگین
در فاصله برخوردهای پیدرپی ، هر مولکول از گاز با سرعت ثابتی در طول یک خط راست حرکت میکند. فاصله متوسط بین این برخوردهای پیدرپی را مسافت آزاد میانگین مینامند. اگر مولکولها به شکل نقطه بودند، اصلا با هم برخورد نمیکردند. و مسافت آزاد میانگین بینهایت میشد. اما مولکولها نقطهای نیستند و بدین جهت برخوردهایی روی میدهد. اگر تعداد مولکولها آنقدر زیاد بود که میتوانستند فضایی را که در اختیار دارند کاملا پر کنند و دیگر جایی برای حرکت انتقالی آنها باقی نمیماند. آن وقت مسافت آزاد میانگین صفر میشد. بنابراین مسافت آزاد میانگین بستگی دارد به اندازه مولکولها و تعداد واحد آنها در واحد حجم. و به قطر d و مولکولهای گاز به صورت کروی هستند در این صورت مقطع برای برخورد برابر با лd2 خواهد بود.
مولکولی با قطر 2d را در نظر میگیریم که با سرعت V در داخل گازی از ذرات نقطهای هم ارز حرکت میکند. این مولکول در مدت t استوانهای با سطح مقطع лd2 و طول Vt را
دانلود پروژه ترمودینامیکک 8 ص