
نوع فایل : power point
تعداداسلاید : 44
جداسازی گازها
فیلترهای صنعتی
رآکتورهای غشائی
دفع هیدرو کربن های سنگین توسط غشا
جداسازی گازها
گاز شیرین چیست و چرا گاز را شیرین می کنیم؟
نوع فایل : power point
تعداداسلاید : 44
جداسازی گازها
فیلترهای صنعتی
رآکتورهای غشائی
دفع هیدرو کربن های سنگین توسط غشا
جداسازی گازها
گاز شیرین چیست و چرا گاز را شیرین می کنیم؟
فرمت ورد 38صفحه
چکیده
این مقاله خلاصهای از دادههای کلیدی PVT ارائه میدهد که بازیافت و عملکرد چاه و مخازن گاز چگالی شده را نشان میدهد. اهمیت ویژه دادههای PVT در زمینه اهمیت آنها برای مکانیزمهای بازیافت و روشهای جریان مورد بررسی قرار میگیرد. اهمیت فاز رفتاری برای پروژه های چرخهی گاز نیز تحت پوشش قرار میگیرد. مدل سازی کردن سیستمهای جریان مخازن با گازهای چگالیده و یک معادله نیز مورد بحث قرار میگیرد، همانطور که در مدل سازی EOS در سیستم های جریان پیچیده مشاهده شد که به شدت ترکیبات متغیر و ویژگی های PVT را بحث می کند.
مقدمه
این می تواند بحث شود که مهندسی در رشته و زمینه گاز چگالیده شده، دربردارنده 80درصد مهندسی گاز سنتی است و 20 درصد مهندسی خارجی است. اعداد و ارقام میتواند 10/90 یا 30/70 باشد اما اکثریت مهندسی ها در زمینه گاز چگالیده شده همیشه با مهندسی یک مخزن گاز بدون چگالی یکسان است.
تفاوت عمده بین یک میدان گاز چگالیده شده و یک گاز خشک علاوه بر هزینه از سطح تولید چگالی استخراج میشود. تولید چگالی از مخزن گاز تولید شده استنتاج می شود(= "گاز مرطوب" تولید شده = جریان مایع تولید شده) همانطور جریان مایع تولید شده در سطح پردازش می شود. تولید مخازن گاز میتواند در بیشتر قسمتها بوسیله ابزارهای مهندسی گاز سنتی قابل دسترس باشد.
از دیدگاه مهندسی، دو پیامد "خارجی" باید در یک مخزن گاز چگالیده شده مورد خطاب قرار بگیرند که به صورت زیر هستند:
مسمومیت با اکسید کربن یا گاز زغال
دکتر صمد قضائی
از اجسادی که برای کالبدگشایی به پزشکی قانونی آورده می شوند می توان اجساد مسمومین با گاز زغال یا اکسید کربن را نام برد، اجساد کسانی که غالباً مظلومانه و بناحق در اثر غلفت و نادانی خود یا برخی اوقات بطور حادثی و بالاحییاد در اثر تنفس کردن گاز اکسیدکربن یا گاز زغال در گذشته اند از آنجایی بالاجبار که اکثر این مرگها قابل اجتناب وناحق بوده و بطور غم انگیزی افراد بیگناه و مظلوم وغالباً بی اطلاع و غافل را از بین می برند جای آن هست که در شناسانیدن این مسمومیت و مطلع گردانیدن مردم عادی از خطرات آن اقدام جدی بعمل آید .
گفتیم که این مرگها ناشی از مسمومیت حاصل از استنشاق گاز اکسید کربن یا باصطلاح گاز زغال می باشند که درتمام محیطهای زندگی وکاری کم وبیش وجود دارد .
گاز اکسید کربن در اثر سوختن ناقص مواد کربن دار حاصل میشود وتمام مواد سوختنی محتوی کربن می باشند از قبیل زغال ، چوب ، نفت، گازاویل ، مازوت و غیره بدین ترتیب این گاز در تمام کانونهای سوخت و احتراق بوجود می آید : منقل، بخاری، اجاق کوره ، آب گرم کن موتور اتومبیل و غیره بعلاوه مواد قابل انفجاری مانند باروت و تی ان تی و غیره بعلت دارا بودن کربن بعد از انفجار مقدار زیادی اکسید کربن بوجود می آورند .
ظاهراً سوختن کامل مواد سوختنی فوق الذکر نباید تولید اکسید کربن ( CO) بکند بلکه طبق فرمول زیر باید گازکربنیک ( C O2 )بوجود بیاورد ولی اگر سوخت ناقص بود و اکسیژن کم باشد تولید اکسیدکربن ( C O ) می گردد ولی درعمل نه تنها در موارد ناقص سوخت این مواد ( معیوب بودن دستگاه ) اکسید کربن بوجود می آید بلکه بعد از سوخت کامل و در بهترین شرایط وسالمترین دستگاهها نیز باز اکسیدکربن درست می شود که ناشی از یک پدیده شیمیایی بنام ( ردو کسیونآندوترمیک ) می باشد که آن به علت حرارت زیاد گاز کربنیک ( CO2 ) حاصل از سوخت کامل تبدیل به اکسید کربن ( CO ) می گردد بطوریکه طبق نظریه کن آبرست در بهترین وسالمترین وسایل سوخت حداقل یکصدم گازها حاصل از احتراق اکسید کربن می باشد یعنی نسبت اکسید کربن ( CO ) به گاز کربنیک ( CO2 ) حداقل یکصدم می باشد بدین ترتیب مشاهده می شودکه هیچ کانون سوخت وسوزی ولو سالم و بی عیب که به رنگ وشکل و وضع مطلوب هم بسوزد بدون تولید اکسید کربن نخواهد بود تا چه رسد به اینکه معیوب وناسالم بوده و کامل هم نسوزد که در این صورت مقدار اکسید کربن تولید شده خیلی زیاد خواهد بود . اکسید کربن گاز بی رنگ و بویی است که کمی سبک تر از هوا بوده و فوق العاده سمی و خطرناک می باشد و به طرز دردناکی از انسانهای بی گناه قربانی می گیرد .
کسانی که در اطاق با در و پنجره بسته می خوابند ویک منقل آتش زغال یا یک اجاق یا بخاری دستی را ( که دودکش ندارد ) روشن می گذارند، چه نفتی ، گازی یا زغالی و غیره گازهای حاصله از سوخت در فضای اتاق پخش می شود واکسید کربن موجود در آن افرادی را که در آن اتاق خوابیده اند مسموم می سازد بطوریکه به هنگام صبحدم طلیعه صبح برای آنان شام زندگی می شود غالباً کودکان و افراد مسن یا بیماران به سهولت و به سرعت جان به جان آفرین تسلیم می کنند و افراد سالم و جوان و قوی به حال اغماء و بیهوشی می افتند که بعضی اوقات در صورت درمان سریع و صحیح از مرگ نجات می یابند ( غالباً با باقی ماندن ضایعاتی بویژه ضایعات عصبی ، روانی ) .
یا کودکان معصومی که زیر کرسی می خوابانند در حالی که منقل پر از آتش زغال در زیر آن قرار داده اند صبح با جسد بی جان کودک معصوم روبرو می شوند . بعضی اوقات آبگرمکن حمام را روشن کرده مشغول استحمام می شوند درحالی که عیب و نقصی در سیستم سوختن وجود داشته ومقداری از گازهای حاصله از سوختن نفت یا گاز وارد فضای حمام می گردد یا گاهی در حمام جهت گرم کردن آن بخاری دستی قرار می دهند و آن فضا را آلوده می کنند بطوری که حمام به پایان نرسیده حیات حمام کننده به پایان می رسد .
تعداد صفحه :7
فرمت فایل : WORD (قابل ویرایش)
تعداد صفحات:130
پایاننامه کارشناسی ارشد
مهندسی شیمی
فهرست مطالب:
فهرست اشکال ح
فهرست جداول ذ
علایم اختصاری ر
فصل اول: اهمیت گاز طبیعی؛ خطوط لوله انتقال گاز و شبیه سازی 1
1-1 مقدمه 1
1-2 جایگاه ایران در منابع گازی جهان 2
1-3 گاز طبیعی اولیه و ترکیبات آن 3
1-4 رفتار فازی گاز طبیعی 5
1-5 سیستم خطوط لوله انتقال گاز طبیعی 6
1-5-1 نقاط دریافت گاز 6
1-5-2 لولهها 6
1-5-3 ایستگاههای ارسال و دریافت پیگ 8
1-5-4 شیرهای LBV 9
1-5-5 ایستگاههای تقویت فشار 9
1-5-5-1 انواع کمپرسورهای ایستگاه تقویت فشار 10
1-5-5-2 منحنی مشخصه کمپرسور 11
1-5-6 نقاط برداشت گاز (ایستگاههای تقلیل فشار) 13
1-5-7 ایستگاههای اندازهگیری 13
1-6 مطالعه جریان سیال خط لوله و ابزار شبیهسازی 14
1-7 شبیهسازی پایا و دینامیک 15
1-8 هیدراتهای گازی و شبیهسازی 16
فصل دوم: مروری بر تحقیقات گذشته 17
2-1 مقدمه 17
2-2 سیستم خط لوله کمکی برای افزایش ظرفیت انتقال گاز طبیعی 17
2-3 شبیهسازی پایا و دینامیکی خطوط لوله و تجهیزات ایستگاه تقویت فشار 19
2-4 شبیهسازی و بهینه سازی خطوط لوله انتقال گاز 20
2-5 شبیهسازی حالت پایای خطوط لوله انتقال گاز 21
2-6 شبیهسازی دینامیکی خطوط لوله انتقال گاز 21
2-7 رفتار دینامیکی جریان گاز طبیعی فشار بالا در خطوط لوله 22
2-8 شبیهسازی و تخمین حالت جریان گذرا در شبکههای خط لوله با استفاده از مدل تابع انتقال 23
2-9 پیشبینی مصرف گاز طبیعی 25
فصل سوم: معادلات جریان و افت فشار 27
3-1 مقدمه 27
3-2 معادلات ماکروسکوپیک حاکم بر جریان گذرای گاز در لوله 27
3-2-1 موازنه جرم 28
3-2-2 موازنه مومنتوم 28
3-2-3 موازنه انرژی 29
3-3 معادلات طراحی خطوط لوله 30
3-3-1 معادله عمومیجریان گاز 31
3-3-2 فشار متوسط گاز در لوله 32
3-3-3 سرعت سایشی 32
3-3-4 ضخامت لوله و حداکثر فشار مجاز بهره برداری 33
3-4 افت فشار اصطکاکی در تجهیزات 35
فصل چهارم : شبیهسازی دینامیکی خطوط لوله انتقال گاز 36
4-1 مقدمه: هدف از شبیهسازی 36
4-2 معرفی سیستم خطوط لوله انتقال گاز استان اردبیل 37
4-2-1 ایستگاه تقویت فشار اردبیل 39
4-2-2 اطلاعات خطوط لوله انتقال اردبیل 39
4-3 ابزار شبیهسازی چندفازی OLGA 40
4-3-1 اساس مدل OLGA 40
4-3-2 کاربردها 41
4-3-3 بخشهای مختلف نرمافزار شبیهساز جریان 42
4-4 محیط شبیهسازی OLGA و ابزارهای آن 43
4-4-1 کتابخانه 43
4-4-2 تعریف مورد 44
4-4-3 آپشنهای شبیهسازی 45
4-4-4 اجزاء شبکه 46
4-4-5 شرایط مرزی 51
4-4-6 شرایط اولیه 53
4-5 محاسبات حرارتی: 53
4-6 نرمافزار تولید کننده ویژگیهای ترموفیزیکی سیال 55
4-6-1 آنالیز گاز طبیعی خطوط لوله گاز اردبیل 57
4-7 کمپرسور در نرمافزار 58
فصل پنجم: بحث بر روی نتایج به دست آمده از شبیهسازی دینامیکی 62
5-1 مقدمه 62
5-2 شرایط عملیاتی - مقایسه و اعتبارسنجی نتایج 63
5-3 شرایط حاد برودتی و مصرف گاز طبیعی 68
5-3-1 مقدمه 68
5-3-2 اصل کسری درجه روز 69
5-3-3 بررسی ارتباط کسری درجه روز با مصرف گاز طبیعی 70
5-3-4 پیشبینی مصرف گاز 76
5-4 شرایط حاد برودتی و شبیهسازی دینامیکی 78
5-5 آنالیز رفتاری خطوط لوله انتقال گاز در شرایط عملیاتی و شرایط برودتی 81
5-5-1 بررسی متغیرها حول کمپرسور 82
5-5-2 بررسی خط لوله 30 اینچ اردبیل 83
5-5-3 بررسی خط لوله 16 اینچ پارسآباد 86
5-5-4 بررسی خط لوله 8 اینچ خلخال 88
5-5-5 بررسی خط لوله 8 اینچ مشکینشهر 91
5-5-6 بررسی خط لوله 30 اینچ نیروگاه- 16 اینچ مشکینشهر 93
5-5-7 بررسی خط لوله 20 اینچ خلخال 95
5-6 شناسایی نقطه ضعف سیستم خطوط لوله مورد مطالعه 98
5-6-1 راهکاری برای نقطه ضعف سیستم خط لوله 98
فصل ششم: جمع بندی و نتیجه گیری 103
6-1 نقاط قوت تحقیق 103
6-2 نتیجه گیری 104
6-3 پیشنهادات 107
مراجع: 108
فهرست اشکال
شکل 1-1 دیاگرام فشار-دمای گاز طبیعی 5
شکل 1-2 شماتیک تولید، فرآوری، انتقال و تحویل گاز طبیعی 7
شکل 1-3 نمونه احداث خط لوله انتقال گاز و دفن لولهها 8
شکل 1-4 یک نمونه منحنی مشخصه کمپرسور گریز از مرکز 11
شکل 1-5 کاربردهای شبیهسازی جریان 15
شکل 2-1 خط لوله کمکی 17
شکل 2-2 خط لوله کمکی شبیهسازی شده در محیط HYSYS 19
شکل 2-3 شبیهسازی ایستگاه تقویت فشار منطقه چهار انتقال گاز در محیط نرمافزار ASPEN PLUS 20
شکل 2-4 توزیع فشار پایین دست شیر رگولاتور فشار و بالادست شیر انسداد توربینی به عنوان تابعی از زمان 23
شکل 3-1 سیال تکفاز تراکم پذیر در حال عبور از یک لوله 27
شکل 3-2 جریان پایا در خط لوله 31
شکل4-1 نقشه کلی خطوط لوله گاز استان اردبیل 38
شکل 4-2 طرح کلی نرمافزار OLGA 42
شکل 4-3 تغییرات طول-ارتفاع-ضخامت خط لوله اصلی 30 اینچ اردبیل با ضخامتهای 469/0 و 375/0 اینچ 47
شکل 4-4 تغییرات طول-ارتفاع-ضخامت خط لوله10 اینچ خلخال-کلور با ضخامتهای 279/0 و 219/0 اینچ 47
شکل 4-5 تغییرات طول- ارتفاع و ضخامت خط لوله اردبیل-نیروگاه گازی سبلان 47
شکل 4-6 مدل شبیهسازی سیستم خطوط لوله استان اردبیل در محیط نرمافزار OLGA 50
شکل 4-7 انتقال حرارت هدایتی از لایههای دیواره لوله 54
شکل 4-8 تعریف عمق خاک برای لولههای مدفون در خاک 55
شکل 4-9 نرمافزار PVTsim و ترکیب گاز طبیعی وارد شده در نرمافزار با انتخاب معادله حالت PR 56
شکل 4-10 دیاگرام فازی گاز طبیعی خط لوله اردبیل (نرمافزار PVTsim) 58
شکل 4-11 منحنی عملکرد کمپرسور ایستگاه تقویت فشار اردبیل 61
شکل 5-1 منحنیهای شبیهسازی فشار بر حسب زمان در ترمینالهای انتهایی انشعابات در شرایط عملیاتی 67
شکل5-2 منحنی مقایسه ای جمع ماهانه کسری درجه روز و مصارف ماهانه شهر اردبیل 71
شکل 5-3 مصرف روزانه گاز طبیعی شهر اردبیل در برابر مقادیر « کسری درجه روز» 71
شکل5-4 منحنی مقایسه ای جمع ماهانه کسری درجه روزانه و مصارف ماهانه شهر پارسآباد 72
شکل 5-5 دبی مصرف روزانه گاز طبیعی شهر پارسآباد در برابر مقادیر کسری درجه روز 72
شکل5-6 منحنی مقایسه ای جمع ماهانه کسری درجه روزانه و مصارف ماهانه شهر گرمی 72
شکل 5-7 دبی مصرف روزانه گاز طبیعی شهر گرمیدر برابر مقادیر کسری درجه روز 73
شکل5-8 منحنی مقایسه ای جمع ماهانه کسری درجه روز و مصارف ماهانه شهر بیلهسوار 73
شکل 5-9 دبی مصرف روزانه گاز طبیعی شهر بیلهسوار در برابر مقادیر کسری درجه روز 73
شکل5-10 منحنی مقایسه ای جمع ماهانه کسری درجه روز و مصارف ماهانه شهر مشگین 74
شکل 5-11 دبی مصرف گاز طبیعی شهر مشگین در برابر کسری درجه روز 74
شکل5-12 منحنی مقایسه ای جمع ماهانه کسری درجه روز و مصارف ماهانه شهر سرعین 74
شکل 5-13 دبی مصرف روزانه گاز طبیعی شهر سرعین در برابر مقادیر کسری درجه روز 75
شکل5-14 منحنی مقایسه ای جمع ماهانه کسری درجه روز و مصارف ماهانه شهر خلخال 75
شکل 5-15 دبی مصرف ماهانه گاز طبیعی شهر خلخال در برابر مقادیر کسری درجه روز 75
شکل 5-16 منحنیهای شبیهسازی فشار بر حسب زمان در ترمینالهای انتهایی انشعابات در شرایط حاد برودتی 80
شکل 5-17 شماتیک کلی سیستم خطوط لوله اردبیل برای بررسی نتایج 81
شکل5-18 پروفایل فشار خط لوله 30 اینچ اصلی 83
شکل 5-19 پروفایل دبی حجمی گاز در خط لوله 30 اینچ اصلی 84
شکل 5-20 پروفایل سرعت گاز در خط لوله 30 اینچ اصلی 85
شکل 5-21 پروفایل دمای گاز در خط لوله 30 اینچ اصلی 85
شکل 5-22 پروفایل فشار خط لوله 16 اینچ 86
شکل 5-23 پروفایل دبی حجمی گاز در خط لوله 16 اینچ 87
شکل 5-24 پروفایل سرعت گاز در خط لوله 16 اینچ 87
شکل 5-25 پروفایل دمای گاز در خط لوله 16 اینچ 88
شکل 5-26 پروفایل فشار خط لوله 8 اینچ خلخال 88
شکل 5-27 پروفایل دبی حجمی گاز در خط لوله 8 اینچ خلخال 89
شکل 5-28 پروفایل سرعت گاز در خط لوله 8 اینچ خلخال 90
شکل 5-29 پروفایل دمای گاز در خط لوله 8 اینچ خلخال 90
شکل 5-30 پروفایل فشار گاز در خط لوله 8 اینچ مشکینشهر 91
شکل 5-31 پروفایل دبی حجمی گاز در خط لوله 8 اینچ مشکینشهر 91
شکل 5-32 پروفایل سرعت گاز در خط لوله 8 اینچ مشکینشهر 92
شکل5-33 پروفایل دمای گاز در خط لوله 8 اینچ مشکینشهر 92
شکل 5-34 پروفایل فشار گاز در خط لوله 30 اینچ نیروگاه-16 اینچ مشکینشهر 93
شکل 5-35 پروفایل دبی حجمی گاز در خط لوله 30 اینچ نیروگاه- 16 اینچ مشکینشهر 94
شکل 5-36 پروفایل سرعت گاز در خط لوله 30 اینچ نیروگاه - 16 اینچ مشکینشهر 94
شکل 5-37 پروفایل دمای گاز در خط لوله 30 اینچ نیروگاه - 16 اینچ مشکینشهر 95
شکل 5-38 پروفایل فشار گاز در خط لوله 20 اینچ خلخال 96
شکل 5-39 پروفایل دبی حجمی گاز در خط لوله 20 اینچ خلخال 96
شکل 5-40 پروفایل سرعت گاز در خط لوله 20 اینچ خلخال 97
شکل 5-41 پروفایل دمای گاز در خط لوله 20 اینچ خلخال 97
شکل 5-42 محل اتصال خط 16 اینچ پارسآباد به نیروگاه گازی سبلان (خط لوپ 10 اینچ10008) 99
شکل 5-43 پروفایل فشار گاز در خط لوله 16 اینچ پارسآباد در شرایط حاد برودتی و باز کردن مسیر گاز از خط 10 اینچ نیروگاه به کیلومتر 25 خط لوله پارسآباد 99
شکل 5-44 منحنیهای شبیهسازی فشار بر حسب زمان در ترمینالهای انتهایی انشعابات (CGSها) در شرایط حاد برودتی همراه با خط لوپ نیروگاه به خط پارسآباد 101
فهرست جداول
جدول1-1 ذخایر تثبیت شده گاز طبیعی در جهان 2
جدول 1-2 تولید گاز طبیعی در جهان 2
جدول 1-3 مصرف گاز طبیعی در جهان 3
جدول 1-4 نمونه ای از ترکیب گاز طبیعی خام 4
جدول1-5 خطوط لوله انتقال گاز طبیعی بهرهبرداری شده 14
جدول 3-1 جنس لوله و تنش تسلیم 34
جدول 3-2 فاکتور طراحی لوله های فولادی 34
جدول 3-3 شرح انواع Class Location 34
جدول 4-1 مشخصات حرارتی دیوارهها و پوششها 43
جدول 4-2 نمونه ضخامت دیوارهها 44
جدول 4-3 تعریف مورد در نرمافزار OLGA 44
جدول 4-4 آپشنهای شبیهسازی OLGA 46
جدول 4-5 نمونه مشخصات خطوط لوله 48
جدول 4-6 نمونه ای از شیرهای تعبیه شده در شبیهسازی 48
جدول 4-7 مشخصات ورودی سیستم 51
جدول 4-8 مشخصات خروجی سیستم 51
جدول 4-9 شرایط مرزی خروجی انشعابات سیستم خط لوله (ورودی ایستگاههای تقلیل فشار) 52
جدول 4-10 مشخصات گاز موجود در خطوط لوله 57
جدول 4-11 درصد ترکیبات گاز طبیعی (در نرمافزار PVTsim) 57
جدول 5-1 مقایسه مقادیر فشارهای واقعی با مقادیر حاصل از شبیهسازی 64
جدول 5-2 مقایسه دماهای واقعی با مقادیر حاصل از شبیهسازی 65
جدول 5-3 مقایسه مقادیر واقعی با مقادیر حاصل از شبیهسازی حول ایستگاه تقویت فشار 66
جدول 5-4 مجموع ماهانه متوسط کسری درجه روز مربوط به سال 1389 و 1390 70
جدول 5-5 مصارف ماهانه متوسط سالهای 1389 و 1390 شهرهای اردبیل 70
جدول 5-6 رابطه دمای هوا و دبی روزانه گاز مصرفی 76
جدول 5-7 پیشبینی حجم گاز مصرفی در دمای 20- درجه سلسیوس 77
جدول 5-8 پیشبینی حجم گاز مصرفی در 20- درجه سلسیوس در شهرهای دارای دو ایستگاه 77
جدول 5-9 دبی عبوری از ایستگاهها در شرایط دمای 20- درجه سانتیگراد 78
جدول 5-10 مقایسه متغیرها حول کمپرسور در دو وضعیت شبیهسازی 82
جدول 5-11 مقایسه نتایج به دست آمده برای دو شبیهسازی حاد برودتی 102
پیشگفتار
امروزه شبیهسازی در فرآیندها، میتواند ابزاری مهم برای حل مشکلات در صنایع مختلف باشد. ایدهای جدید که بایستی در عالم واقعیت به روش آزمایش و خطا با صرف هزینهها و خطرات بسیار انجام گیرد میتواند در محیط یک نرمافزار قوی، شبیهسازی شده و نتایج حاصل مورد استفاده قرار گیرد. شبیهسازی همچنین میتواند برای بررسی و پشتیبانی عملیاتی یک سیستم، مورد استفاده واقع شود. این پایان نامه، تشریحی از اجرای یک شبیهسازی یکپارچه در خطوط لوله انتقال گاز است و هدف اصلی از این شبیهسازی بررسی و پایش رفتار متغیرهای جریان گاز درون سیستم خطوط لوله مانند فشار، دبی، سرعت و دما است. تغییر دمای هوای محیط باعث تغییر در مصرف گاز میشود و تغییر در مصرف گاز معادل با تغییر در دبیهای خروجی از یک سیستم خطوط لوله است. اکنون رفتار متغیرهای جریان در طول خطوط لوله، چگونه خواهد شد؟ آیا امکان دارد در نقاط منشعبشده از یک سیستم خطوط لوله، فشار گاز آنقدر افت پیدا کند که در نهایت منجر به قطع گاز در آن نقطه گردد؟ در این پایاننامه سعی بر آنست که بررسی کنیم افزایش مصرف گاز طبیعی منتج از افت شدید دمای هوا، چه تأثیری روی رفتار سیال گاز طبیعی درون یک سیستم خط لوله دارد و نقاطی که در این شرایط، احتمال قطعی گاز در آنها وجود دارد را شناسایی نماییم.
فصل اول این پایاننامه در خصوص اهمیت موضوع و مفاهیم اساسی مرتبط با موضوع گاز طبیعی و سیستم و تجهیزات خطوط لوله گاز و شبیهسازی میباشد. فصل دوم مروری بر تحقیقات گذشته است. در فصل سوم تئوری شبیهسازی و معادلات حاکم بر جریان گاز تک فاز در حالت دینامیک نمایش داده شده است. روابط طراحی خطوط لوله و افت فشار در حالت پایا آورده شده و اثر اصطکاک در تجهیزات مختلف تشریح شده است. در فصل چهارم، سیستم خطوط لوله انتقال گاز اردبیل و نرمافزار شبیه ساز OLGA معرفی و روش کار، توضیح داده شده است. پیکربندی سیستم خطوط لوله، ایستگاههای تقلیل فشار، تقویت فشار، مشخصات خطوط لوله، توپوگرافی و مسیر خطوط لوله به نمایش در آمده و مدل شبیهسازی تشریح شده است.
در فصل پنجم، برای به دست آوردن شرایط حاد برودتی، اطلاعات مصارف گاز و دمای هوای شهرهای مختلف، مورد ارزیابی قرار گرفته است. تلاش برای تفهیم موضوع در برابر اطلاعات مذکور انجام گرفته و الگوهای مصارف گاز بهصورت تابعی از دمای هوا بدست آمده و برای شبیهسازی در شرایط حاد برودتی، آماده شده است. نتایج شبیهسازی سیستم خط لوله در محیط نرمافزار OLGA در دو حالت عملیاتی و حاد برودتی تحلیل شده و تغییرات فشار نقاط برداشت از سیستم خطوط لوله در برابر تغییرات زمان به عنوان عکسالعملی از شرایط اعمالشده در شبیهسازی، مورد ارزیابی واقع شده است. همچنین برای تحلیل وضعیت سیستم خطوط لوله، رفتار متغیرهای جریان گاز در طول خطوط لوله، در هر دو حالت عملیاتی و حاد برودتی، مورد مقایسه و بررسی قرار گرفته است. فصل ششم با جمع بندی و نتیجه گیری به اتمام رسیده است.
چکیده
در این تحقیق سیستم خطوط لوله انتقال گاز استان اردبیل به صورت دینامیکی شبیهسازی شده است. هدف از انجام این پروژه تعیین نقاطی از خطوط لوله است که در آنها با کاهش دمای هوا در زمستانها و متعاقباً افزایش مصرف گاز، احتمال کاهش فشار در خطوط لوله و در نهایت؛ احتمال قطع گاز وجود دارد. شناسایی این مناطق کمک شایانی به دست اندرکاران حوزه گازرسانی جهت انجام عملیات پیشگیرانه خواهد نمود. نرمافزار مورد استفاده برای این شبیهسازی، OLGA میباشد. این نرمافزار برای شبیهسازی شبکه خطوط لوله انتقال نفت و گاز و تجهیزات فرآیندی استفاده میشود. قابلیتهای دینامیکی OLGA گستره کاربردی آن را در مقایسه با شبیهسازهای پایا، افزایش میدهد. در این تحقیق، توپوگرافی و مشخصات خطوط لوله انتقال گاز استان اردبیل، شامل اتصالات، شیرها، کمپرسورها و تجهیزات مربوطه، در نرمافزار تعریف شده است. بسته خواص سیال گاز طبیعی توسط نرم افزار PVTsim ایجاد شده است. از اطلاعات فشار، دما و دبی مربوط به زمستان 1390 در شبیهسازی استفاده شده است. ابتدا، شبیهسازی بصورت دینامیکی در شرایط عملیاتی برای پیشبینی مدت زمان 12 ساعت، اجرا شده است. سپس، الگوی مصرف گاز در شهرهای مختلف استان اردبیل به روش کسری درجه روز، بهدست آمده است. با فرض دمای هوای 20- درجه سانتیگراد به عنوان شرایط حاد برودتی، مصرف گاز شهرها در این دما محاسبه شده و با این مصارف جدید، شبیه سازی اجرا گردیده است. اعتبارسنجی نتایج بدستآمده در شرایط عملیاتی در مقایسه با مقادیر واقعی سال 1390 همخوانی خوبی را نشان میدهد. شبیه سازی در شرایط حاد برودتی نشان میدهد در لحظه 2/6 ساعت، در برخی نقاط منشعب از خط لوله 16 اینچ پارسآباد، فشار تا حد قطع گاز، افت پیدا میکند. نتایج شبیهسازیها، برای بررسی و مطالعه رفتار جریان گاز در خطوط لوله استفاده شده و پروفایلهای فشار، دما، دبی و سرعت گاز ترسیم شده است. نتایج نشان میدهد روند تغییرات فشار گاز در خطوط لوله منطبق با توپوگرافی مسیرها میباشد؛ گاز خط لوله 8 اینچ خلخال در اثر جریان گاز با فشار بالاتر خط لوله 20 اینچ تقویتی دارای حرکت معکوس است؛ در اثر کاهش دبی عبوری از کمپرسور در شرایط حاد برودتی نسبت تراکم و دمای گاز خروجی از کمپرسور افزایش مییابد و فشار در خط لوله 16 اینچ در شرایط حاد برودتی افت زیادی پیدا میکند. سپس بعنوان یک راهکار، شیرهای خط لوله کمکی برای انتقال گاز از خط لوله 30 اینچ نیروگاه به کیلومتر 25 خط لوله 16 اینچ پارسآباد، در وضعیت باز قرار داده شده و شبیهسازی اجرا شده است. نتایج بدست آمده در این حالت، نشاندهنده بهبود وضعیت و افزایش فشار در خط لوله 16 اینچ و تداوم گازرسانی به مدت 6/5 ساعت بیشتر نسبت به وضعیت قبلی، میباشد. نتایج این تحقیق میتواند در بهینهسازی، طراحی و توسعه آتی سیستم خطوط لوله، مورد استفاده قرار گیرد.
واژههای کلیدی: شبیه سازی، دینامیک، خطوط لوله، مصرف گاز، افت فشار
فهرست مطالب
تاریخچه مصرف گاز طبیعی در جهان: 8
تاریخچه شرکت ملی گاز ایران.. 11
دلایل ارجح بودن گاز طبیعی به سایر سوختها 13
هدف از ایجاد پستهای امدادی: 15
شرح وظایف شاغل در پستهای امدادی گاز: 22
ارجاع کارها و وظایف پیمانکار و برسی آن در امداد: 22
دانش و مهارت امداد گران گاز طبیعی: 23
عوامل مورد بررسی توسط امداد گر گاز و دلایل آن: 24
خوردگی و راه کارهای مقابله با آن: 31
روشهای جلوگیری از خوردگی یکنواخت: 51
روشهای جلوگیری از خوردگی حفره ای: 51
روشهای جلوگیری از خوردگی تنشی: 53
روشهای جلوگیری از خوردگی هیدروژنی: 54
خورد گی ناشی از جریان های سر گردان: 55
حفاظت از خوردگی لوله های مدفون : 60
امکان استفاده از ابزارهای هوش مصنوعی در کنترل خوردگی : 65
2_روش استفاده از جعبه نمونه خاک: 84
مشخصات فنی سیلیکاژلهای مورد استفاده در صنعت نفت... 99
بررسی روش های مختلف تولید سیلیکاژل.. 99
روش نگهداری ایستگاههای حفاظت کاتدیک: 102
وسائل اندازه گیری مقدار جریان گاز 124
ساختمان ایستگاههای تقلیل فشار 129
سیستم تامین و کنترل سوخت : 145
اثر دیافر اگم در DROOP رگلاتور: 159
رگلاتورهای پایلوت دار : pilot operated regalator. 161
طرز تنظیم رگلاتورهای Active-Monitor. 166
بستن رگلاتورها بصورت موازی.. 167
طریقه آزمایش کنتورهای توربینی.. 179
بررسی صحت کار تصحیح کننده ها : 182
تجهیزات ایمنی ایستگاههای تقلیل فشار 186
شیرهای اطمینان پایلوت دار : 189
طریقه تنظیم شیرهای اطمینان.. 190
شیر قطع فشار High press. Shutoff Valve. 191
شیرهای قطع فشار با عمل کننده مکانیکی : 192
شیر قطع فشار با عمل کننده نیوماتیکی.. 193
در این گزارش سعی شده تا به نحوه گازرسانی و خدمات آن و حفاظت از سیستمها و ایستگاههای گازرسانی و چگو نگی افزایش راندمان و بهره وری بهتر پرداخته شود.
امید است تا با بهره گیری از این گزارس حرکتی در جهت افزایش آگاهی و دانش گازرسانی برداشته شود
با تشکر از تمام کسانی که ما را در این امر یاری نمودند به ویژه جناب آقای سید محمد رضا داوودی رئیس واحد ابزار دقیق ناحیه دو که در گرد آوری این مجموعه کمال همکاری و مساعدت را ارائه نمودند.
تاریخچه مصرف گاز طبیعی در جهان:
متصاعد شدن گاز از زمین هم در مکتوبات قدیم و هم در نوشته های عصر جدید تحریر شده است شعله ور شدن گازها توسط رعد و برق و یا عوامل طبیعی دیگر همیشه قابل مشاهده بوده است وجود پدیده های مشتعل طبیعی نظیر آتش جاویدان باکو در دریای خزر و چشمه سندان در نزدیک کارستون در ایالت ویرجینیای غربی و ... همه نمایشی از وجود گاز طبیعی در گذشته است که عموماً هم وقوع انها توام با ترس و خرافات طرح می گردیده اند و بر همین مبنا تا اواخر قرن هفده اعتقاد بر این بوده است که گاز متصاعد شده از حبابهای سطح آب باعث می شود تا اب مانند نفت بسوزد و ان را آب جادویی می دانستند.
اعتقاد بر این است که اول بار چینی ها در 3000 سال قبل استفاده عملی از گاز را برای تبخیر آب نمک ه عمل آورده اند این گاز بنابر شواهد تاریخی از عمق 300 تا 600 متر خارج می گشته و مورد استفاده بوده است اما استفاده صنعتی از گاز به اوایل قرن هجدهم می رسد.
در این سال اول بار شخصی انگلیسی به نام ( مرداک) از گاز حاصل از زغال سنگ به صورت مجزا در محل مسکونی خود استفاده نموده است که این تجربه باعث شد از گاز برای روشنایی در فضای باز استفاده نمایند که این امر در سالهای 4-1802 در انگلیس انجام شد. همچنین در سال 1855 با اختراع مشعل بنسن که توسط یک شیمیدان آلمانی به همین نام ابداع شده بود اختلالات و نوسانات شعله های گاز کنترل و مهار شد که این اختراع توسط دانشمند آلمانی دیگر ( فن ولزباخ ) تکمیل شد.
علیرغم کشف مخازن گاز در اواخر قرن 19 در امریکا بدلیل مشکلات حمل استفاده از گاز تا 1930 رونق نداشت البته سابقه حمل گاز با لوله به سال 1870 برمی گردد.
یعنی به عبارتی گازرسانی به محوطه کارخانه سوهر که با استفاده از گاز تمامی محوطه ان روشن شد همچنین در این هنگام در خانه شخصی و محوطه کارخانه رئیس یکی از کارخانه های پارچه بافی منچستر از گاز برای روشنایی استفاده شده است.
در این سال سعی گردید با استفاده از لوله هایی که از تنه درخت کاج ساخته شده بود گاز را عبور دهند اولین لوله چدنی در سال 1872 در امریکا برای انتقال گاز مورد استفاده قرار گرفته است.
اما با پیشرفت در امر لوله سازی در سال 1924 اولین خط لوله چدنی به طول 350 کیلومتر در آمریکا بین دو شهر مورد استفاده قرار گرفت اولین سال استفاده از گاز طبیعی در امریکا به سال 1821 باز می گردد و اولین چاه گاز با عمق 9 متر در شهر فردونا به بهره برداری رسیده است همچنین اولین شرکت در این خصوص در همان کشور در سال 1865 تاسیس و در سال 1885 نود واحد صنعتی در ناحیه پنسیلیوانیا از گ