نوع فایل : power point
تعداداسلاید : 44
جداسازی گازها
فیلترهای صنعتی
رآکتورهای غشائی
دفع هیدرو کربن های سنگین توسط غشا
جداسازی گازها
گاز شیرین چیست و چرا گاز را شیرین می کنیم؟
نوع فایل : power point
تعداداسلاید : 44
جداسازی گازها
فیلترهای صنعتی
رآکتورهای غشائی
دفع هیدرو کربن های سنگین توسط غشا
جداسازی گازها
گاز شیرین چیست و چرا گاز را شیرین می کنیم؟
هوش مصنوعی یکی از پهناورترین، جذابترین و مهمترین قسمتهای علوم کامپیوتری است. در این مقاله سعی شد مفاهیم اولیه این علم در ساخت بازیهای کامپیوتری توضیح داده شود. البته باید بدانید هوشمصنوعی در این بازیها مبحث مفصل و گستردهای است که در بسیاری از دانشگاههای معتبر دنیا برای آن رشتههای تا حد کاردانی در نظر گرفته شده است. در معدود بازیهای تولیدشده در کشورمان میبینیم که قسمت هوشمصنوعی بازی بسیار ایراد دارد. علت هم مشخص است. ساخت هوشمصنوعی ( و همچنین موتورهای ساخت بازی ) یا باید توسط طراحان کشورمان صورت گیرد که متأسفانه علم آن وجود ندارد یا از مدلهای خارجی استفاده شود که آن هم به علت هزینههای زیاد خرید آنها عملاً غیرممکن است. امیدواریم در آینده با پیشرفت برنامهنویسان کشورمان در این حوزه، بتوانیم بازیهای کامپیوتری ساخت کشورمان را با لذت و بدون احساس تفاوتهای آشکار با نمونههای خارجیشان، بازی کنیم
هدف اصلی فرایند کد کردن سیگنال های صحبت، افزایش کیفیت سیگنال دریافتی برای یک نرخ بیت مشخص و یا حداقل سازی نرخ بیت در ازای یک کیفیت دریافتی معین می باشد. نرخ بیت مناسب در صحبت که باید ارسال و ذخیره گردد به هزینه انتقال، هزینه فشرده سازی سیگنال صحبت دیجیتال و کیفیت صحبت مورد نیاز بستگی دارد. تاکنون روش های گوناگونی در زمینه فشرده سازی صوت مطرح شده است. در برخی از روش های مذکور مانند LD-CELP تاخیر کم حائز اهمیت است. از طرف دیگر گاهی کیفیت بالاتر اولویت بیشتری در مقایسه با تاخیر کم دارد. به طور کلی در سیستم هایی که به شبکه تلفن متصل می شوند، صحبت کد شده باید دارای کیفیت بالایی باشد و با استانداردهای ITU مطابقت داشته باشد. اما در سیستم های محدود مانند شبکه های تجاری خصوصی و یا سیستم های نظامی نرخ بیت پایین تر نسبت به کیفیت بالاتر از اهمیت بیشتری برخوردار می باشد. تقریباً در همه کد کننده های صحبت، سیگنال بازسازی شده با سیگنال اصلی تفاوت دارد. در این سمینار پس از بررسی روند تولید صحبت و معرفی اجمالی تعدادی کد کننده و مقایسه آن ها ،تکنیک هایی به منظوره بهبود کیفیت در زمینه کند کننده های مطرح شده با توجه به مقالات موجود ارائه خواهد شد. شایان ذکر است در این سمینار به معرفی اجمالی سیستم GSM و کد کننده VSELP نیز پرداخته شده است.
مقدمه:
امروزه در عصر ارتباطات و استفاده از شبکه های تلفنی، موبایل، اینترنت و با توجه به محدودیت پهنای باند در شبکه های مخابراتی، فشرده سازی صوت امری اجتناب ناپذیر است. در دهه های اخیر روش های متفاوتی در زمینه فشرده سازی صوت مطرح شده است. مناسب ترین و پرکاربرد ترین آن ها کد کننده های آنالیز با سنتز می باشند. در سال 1985 کد کننده صحبت با نرخ بیت زیر 16 کیلوبیت بر ثانیه با روش CELP معرفی شد و چندین استاندارد مهم براساس این روش تعریف شد. در سال 1998، CCITT کار روی برنامه ای برای استاندارد سازی کد کننده ای با تاخیر کم و کیفیت بالا در مقابل خطای کانال را آغاز نمود و بالاخره در سال 1992 توسط Chen etal کد کننده تحت عنوان LD-CELP معرفی شد و به صورت استاندارد در آمد. در این سمینار به طور عمده به بررسی خانواده های CELP پرداخته شده است. در فصل اول روند تولید صحبت و برخی روش های فشرده سازی و بررسی اجمالی آن ها پرداخته شده است. سپس در فصل دوم به طرح مدلی برای پیشگویی خطی و تخمین پارامترهای LPC با استفاده از پیشگویی خطی پیچشی پرداخته شده است. در فصل سوم، ضمن شرح کد کننده های CELP، اصلاحاتی برای بهبود SNR خروجی دیکدر، شامل تغییر سایز بردار تحریک از 5 نمونه به 10 نمونه، استفاده از جستجوی درختی، همچنین ایجاد کتاب کد جدید با استفاده از آنالیز PCA پیشنهاد شده است. در فصل چهارم به بررسی کد کننده CS-ACELP, ACELP, VSELP پرداخته شده و یکسری تکنیک های بهینه سازی جستجوی کتاب کد در ارتبا با کد کننده ACELP در ادامه آمده است. علاوه بر پیچیدگی 40 درصدی منجر به بهبود 0/25 دسیبل در SNR خروجی دیکدر می گردد. در فصل پنجم به بررسی کد کننده LD-CELP پرداخته شده می شود. نتیجه گیری و پیشنهادات نیز در فصل هفتم آورده شده است.
تعداد صفحه :93
فرمت فایل : word(قابل ویرایش)تعداد صفحات35
تحلیل داده ها
1- ارقام با معنی:
برای تعیین رقمهای با معنا ، رقمها را از سمت چپ به راست می شماریم. صفرهایی ک قبل از اولین رقم سمت چپ نوشته می شوندجزء رقمهای با معنا به حساب نمی آیند این صفرها به هنگام تبدیل یکاها ظاهر می شوند و تبدیل یکاها نباید تعداد رقمهای با معنا را تغییر دهد
12/6 : سه رقم بامعنی
0010306/0 :پنج رقم با معنی که اولین رقم با معنی یک است.صفرهای قبل از یک با معنی نیستند
20/1 : سه رقم با معنی در صورتیکه صفر با معنی نباشد عدد باید به صورت2/1 نوشته شود
38500 : سه رقم با معنی، چیزی برای اینکه نشان دهد صفرها با معنی هستند یا نه مشخص نیست می توان این ابهام را با نوشتن بصورتهای زیر برطرف کرد:
: هیچکدام از صفرها با معنی نیستند
: یکی از صفرها با معنی است
:هر دو صفر با معنی است
m 040/0 = Cm0 /4=mm40 که هر سه دارای سه رقم با معنی هستند.
2- گرد کردن اعداد:
گرد کردن به دو رقم
اگر بخواهیم ارقام عدد 3563342/2 را به دو رقم کاهش دهیم، این عمل را گرد کردن عدد می نامند. برای این منظور باید به رقم سوم توجه کنیم بدین صورت که اگر قم سوم بزرگتر یا مساوی5 باشد رقم دوم به طرف بالا گرد می شود و اگر رقم سوم کوچکتر از 5 باشد رقم دوم به حال خود گذاشته می شود
گرد کردن به سه رقم
4/1 3563342/2
گرد کردن به سه رقم
62700 62654
108/0 10759/0
3- محاسبات و ارقام با معنی:
می خواهیم سطح مقطع یک استوانه به قطر6/7 را بدست آوریم:
اشکال کار: اگر دقت کنیم محاسبات تا 10 رقم با معنی است اگر از کامپیوتری تا 100 رقم استفاده می کردیم چه؟ در صورتیکه قطر کره تا دو رقم با معنی است بنابراین در اینگونه موارد به نکات زیر توجه می کنیم:
توجه: اگر مجبورید محاسبه ای را که در آن خطای مقادیر مشخص نیست انجام دهید و می بایستی فقط با ارقام با معنی کار کنید به نکات زیر توجه کنید:
الف ) زمانی که اعداد را در هم ضرب و یا بر هم تقسیم می کنید: عددی که با کمترین ارقام با معنی در محاسبه است را شناسایی کنید به حاصل محاسبه همین تعداد ارقام با معنی نسبت دهید
چون 7/3 با دو رقم با معنی است
ب ) زمانی که اعداد را با هم جمع و یا از هم کم می کنید: تعداد ارقام اعشاری عدد حاصل از محاسبه را برابر تعداد کمترین ارقام اعشاری اعداد شرکت داده شده در محاسبه گرد کنید
کمترین اعشار مربوط به1/13 است
مثال: شعاع یک کره5/13 سانتیمتر برآورد شده است. حجم ایمن کره را بدست آورید؟
جواب:
مثال: چگالی کرهای به جرم44/0 گرم و قطر76/4 میلی متر را بدست آورید؟
4- متغیرهای وابسته و مستقل:
به کمیتی که مقدار آن را می توانیم تنظیم نمائیم و یا در طول آزمایش به دلخواه تغییر داده می شود، متغیر مستقل گفته می شود و آنرا به عنوان مختصهx در نمودار می گیریم.
به کمیتی که بر اثر تغییر در متغیر مستقل پیدا می کند، متغیر وابسته گفته می شود و به عنوان مختصهy در نمودار گرفته می شود.
طول
مثلا در آزمایش انبساط طولی میله در اثر حرارت دما متغیر مستقل و طول میله متغیر وابسته می باشد
5- خطا :
تمام اندازه گیریها متاثر از خطای آزمایش هستند.منطور این است که اگر مجبور با انجام اندازه گیریهای پیایی یک کمیت بخوصوص باشیم، به احتمال زیاد به تغییراتی در مقادیر مشاهده شده برخورد خواهیم کرد. گرچه امکان دارد بتوانیم مقدار خطا را با بهبود روش آزمایش و یا بکارگیری روشهای آماری کاهش دهیم ولی هرگز نمی توانیم آن را حذف کنیم.
1-5- خطای دقت وسایل اندازه گیری :
هیچ وسیله اندازه گیری وجود ندارد که بتواند کمیتی را با دقت بینهایت اندازه گیری نماید.بنابراین نادیده گرفتن خطای وسایل اندازه گیری در آزمایش اجتناب ناپذیر است.
اگر اندازه کمیتی که اندازه می گیریم با گذر زمان تغییر نکند، مقدار خطا را نصف کوچکترین درجه بندی آن وسیله در نظر می گیریم.
مثال:
متر کوچکترین درجه mm1 = مقدار خطا
پس اندازه گیریی mm54 را بصورت بیان می کنیم
دما سنج کوچکترین درجه ºC2 = مقدار خطا
پس اندازه گیریی ºC60 را بصورت بیان می کنیم
2-5- خطای خواندن مقدار اندازه گیری:
3-5- خطای درجه بندی وسایل اندازه گیری:
مقدار کمیت
تعریف خطای مطلق: اگر خطا را با همان یکای کمیت اندازه گیری شده بیان نمائیم، به این خطا، خطای مطلق کمیت اندازه گیری گفته می شود
تعریف خطای نسبی: اگر خطا بصورت کسری باشد، به این کسر، خطای نسبی مقدار کمیت اندازه گیری شده گفته می شود
پوششهای لایه نازک، کاربرد خواص مکانیکی و روشهای اندازهگیری
31 صفحه در قالب word
خواص مکانیکی لایه ها
ترکیب عمومی (طرح عمومی)
رفتار مکانیکی لایه ها از دو دیدگاه اصلی دارای اهمیت است. در اصل، مطالعه و فهمیدن چنین رفتارهایی میتواند منجر به درک بهتر ما از خواص تودة مواد شود. در عمل کار رضایت بخش بسیاری از قطعات لایه ای به شکل و ترتیب قرار گرفتن لایه های پایدار- که میتوانند در برابر تاثیرات محیط زیست تاب بیاورند- بستگی بحرانی دارد.
مانند خیلی از خواص دیگر لایه ها، خواص مکانیکی لایه ها هم به چند تایگی معمولی فاکتورهای وابسته در آماده سازی آنها بستگی دارد. به دلیل مشکلات تجربی و محدودیت های موجود در آزمایشها، اکثریت کار انجام شده روی خواص مکانیکی روی لایه های چند بلوری انجام گرفته و این به خاطر ساختار مختلط بیشتر لایه ها است. مطالعاتی دربارة برآراستی لایه ها انجام شده، اما طبیعت اندازه گیری دقیق، که مستلزم استخراج اطلاعات خواص مکانیکی است، و عدم قطعیت مشکلاتی را در این مطالعات ایجاد میکند.
بیشتر مطالعات انجام شده دربارة لایه های فلزی بوده اند و به مواد دی الکتریک که در قطعات الکتریکی و اپتیکی گوناگون اهمیت دارند نیز توجه شده است. اندازه گیری ها شامل فشار (تنش) و کرنش، خزش، رفتار قالب پذیری و نرمی، قدرت شکست و در پایین ترین سطح و کمترین حد شامل سختی میشوند. مدلهای تئوری گوناگونی پیشنهاد شده اند که اگرچه در این مرحله حتی در جزئیات با تجربه توافق دارند ولی آنها را در نظر نمی گیریم. با وجود این، یک اصول عمومی وجود دارند که به عنوان راهنما برای کارهای بعدی بکار گرفته میشوند.
وقتی لایه ها با تبخیر گرمایی، یا با تجربه بخار روی یک بستر گرمایی، شکل می گیرند، آنگاه اگر ضریب انبساط لایه ها و بستر گرمایی یکسان باشد وقتی سیستم تا دمای اتاق سرد می شود، یک فشار گرمایی ایجاد شده و پیشرفت میکند. این اثر- که در بسیاری از موارد اتفاق می افتد- خودش را به شکل جداسازی لایه ها از سطح به وضوح نشان میدهد. در حقیقت هنگامی که بستر گرمایی در دمای اتاق است، فشار گرمایی ذخیره شده در لایه های رسوبی رابا هیچ وسیله ای نمی توان آشکار کرد. دمایی که لایه ها در آن شکل می گیرند، از آنجایی که مفهوم بد تعریفی است، ممکن است با دمای بستر گرمایی تفاوت داشته باشد. مخصوصا وقتی که اتمهای چگالیده با یک سرعت بالای گرمایی وارد میشوند: اثر «دما»ی لایه های چگالیده به عاملهای تعادل که گرمای مادة چگال را کنترل میکنند بستگی دارد و این عاملها معمولاً به سختی قابل تشخیص هستند. قستمی از دمای سطح بستر گرمایی توسط تابشهای دریافت شده از منبع تعیین میشود و قسمتی از آن را گرمای نهانی که توسط لایه های چگالیده داده شده تعیین میکند. وقتی ضخامت لایه های فلزی افزایش پیدا می کند، کسر بزرگی از انرژی گرمایی که از بستر گرمایی تابش می کند ممکن است بازتابیده شود. بعلاوه وقتی ثابتهای اپتیکی لایه های بسیار نازک با ضخامت به سرعت (و اغلب با رفتاری بسیار پیچیده) تغییر میکنند این اثر به دشواری قابل تشخیص است. قبل از بحث کردن دربارة جزئیات این اثر، میپردازیم به روشهای تجربی ای که برای مطالعه خواص مکانیکی لایه های نازک به کار می روند.
2-5) تکنیک های تجربی
الف) اندازه گیری تنش و کرنش
اندازه گیری تنش (فشار) در لایه ها معمولاً با تکنیک باریکه- خمش انجام میشود. تکنیکی که در آن لایه ها روی یک باریکة مستطیلی نازک ته نشین شده و رسوب میکنند. در اندازه گیری انحرافهای کوچکی که در تداخل سنجی، ظرفیت و نظم و ترتیب الکترومکانیکی به کار گرفته شده رخ میدهد هر تغییری میتواند در روشها ایجاد شود. در بیشتر موارد حل عمومی برای خمش باریکة مرکب از دو ماده با خواص الاستیکی متفاوت، تا وقتی که ضخامت لایه در برابر ضخامت باریکه کم است، مورد نیاز نمی باشد.
اگر لایه ها به طور ثابتی مقید به بستر گرمایی باشند و اگر شارش نرم و قالب پذیری در سطح میانی به وجود نیاید آنگاه برای ضخامت باریکه (d) ، مدول یانگ (Y)، نسبت پواسون () و فشار (S) در ضخامت لایه (t) داریم:
(1-5)
وقتی که شعاع انحنای فشار باریکة اولیه، مستقیم فرض شود.
اندازه گیری مستقیم کرنش با متد بارگیری مستقیم علیرغم مشکلات زیادی که وابسته به زیاد شدن لایه ها است، بکار می رود. طرح یکی از سیستمهایی که استفاده میشود در شکل (1-5) نشان داده شده است (این طرح در اصل برای مطالعات تاره ها طراحی شده بود ولی بعدها برای کار لایه ها تعدیل شد).
ممکن است هنگام انتقال از فایل ورد به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل است
متن کامل را می توانید در ادامه دانلود نمائید
چون فقط تکه هایی از متن برای نمونه در این صفحه درج شده است ولی در فایل دانلودی متن کامل همراه با تمام ضمائم (پیوست ها) با فرمت ورد word که قابل ویرایش و کپی کردن می باشند موجود است