فایلکو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

فایلکو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

پایان نامه بررسی فعالیت و انتخاب‌پذیری کاتالیستهای اکسایشی – کاهشی (Redox)

اختصاصی از فایلکو پایان نامه بررسی فعالیت و انتخاب‌پذیری کاتالیستهای اکسایشی – کاهشی (Redox) دانلود با لینک مستقیم و پر سرعت .

تعداد صفحات پایان نامه: 115 صفحه

در این پست می توانید متن کامل این پایان نامه را  با فرمت ورد word دانلود نمائید:

 

 دانشگاه آزاد اسلامی واحد ماهشهر

رشته مهندسی شیمی طراحی فرآیندهای صنایع نفت

 عنوان :

بررسی فعالیت و انتخاب‌پذیری کاتالیستهای اکسایشی- کاهشی (Redox) در فرآیند زوج شدن اکسایشی متان در راکتور بستر سیال

استاد راهنما:

آقای مهندس سری

نگارش:

عبدالامیر کهربائی

چکیده:

در این تحقیق فرآیند زوج شدن اکسایشی متان روی کاتالیستهای دارای خاصیت اکسایشی- کاهشی در راکتور بستر سیال بررسی شد. بدین منظور کاتالیست Mn-Na2WO4/SiO2 بعنوان یک کاتالیست دارای خاصیت اکسایشی- کاهشی انتخاب شد. بمنظور بررسی خاصیت فوق در این کاتالیست آزمایشهای حالت گذرا طراحی و انجام شد. سپس به بررسی شرایط مختلف واکنشی روی این کاتالیست در راکتور بستر سیال پرداختیم.

در آزمایشهای حالت گذرا خوراک متان بدون حضور اکسیژن در فاز گاز به صورت یک تغییر پله‌ای روی کاتالیست فرستاده شد و واکنش زوج شدن اکسایشی متان مورد برسی قرار گرفت. خروجی راکتور توسط دو سیستم GC و GC-MS مورد آنالیز قرار گرفت. اثر دماهای مختلف عملیاتی در میزان تولید محصولات زوج شدن نشان داد که کاتالیست مزبور دارای خاصیت اکسایشی- کاهشی است و با افزایش دمای بستر کاتالیستی میزان تحرک اکسیژن شبکه افزایش یافته و بدین ترتیب افزایش در تولید محصولات را شاهد خواهیم بود. اکسیداسیون مجدد بستر کاتالیستی با اکسیژن و تکرار آزمایشها و نتایج دلیل خوبی در تأیید خاصیت اکسایشی-کاهشی کاتالیست است.

در بخش دوم آزمایشهای حالت گذرا در دو دمای 800 و oC850 و با همان شرایط قبلی تکرار شد و درصد تبدیل متان، درصد مولی اجزاء و انتخاب‌پذیری محصولات مورد بررسی قرار گرفت. مشاهده شد که ابتدا میزان تبدیل متان بالا است و سپس با کاهش اکسیژن کاتالیست و همچنین کاهش سرعت در اختیار قرار دادن آن، میزان تبدیل متان کاهش قابل توجهی می‌یابد.

با توجه به نمودار اجزای مولی محصولات بر حسب زمان در زمانیکه میزان تبدیل بالا است عمده محصولات واکنش زوج شدن C2H6 , C2H4 است. به عبارت دیگر در دقایق اولیه انتخاب پذیری C2+ بالا است ولی با گذشت زمان انتخاب‌پذیری افت محسوس داشته و امکان تشکیل CO روی کاتالیست افزایش می‌یابد. تغییرات فوق در دمای oC850 بدلیل سهولت در اختیار قرار گیری اکسیژن کاتالیست شدیدتر است.

سپس تستهای بررسی عملکرد در راکتور بستر سیال و در شرایط مختلف عملیاتی مورد بررسی قرار گرفت. اثر دمای بستر کاتالیستی، سرعت ظاهری گاز ورودی (دبی حجمی خوراک) و میزان اکسیژن در خوراک ورودی روی بازده و انتخاب‌پذیری کاتالیست پارامترهایی عملیاتی مورد تحقیق بودند و در نهایت مقایسه بین عملکرد بستر ثابت و سیال در شرایط یکسان انجام شد. هنگام انجام فرآیند OCM در بستر سیال، دستیابی به شرایط همدما که اساساً بواسطه اختلاط معکوس فاز جامد می‌باشد، ممکن شد. بالاترین بازده C2+ بدست آمده در راکتور بستر سیال در حدود 9/21% (سرعت ورودی گاز= cm/s 3/4 (دبی حجمی خوراک= sccm478)، دمای بستر کاتالیستی= °C870، 1=Air/ CH4و وزن کاتالیست= g5/3) بود. انتخاب‌پذیری C2+ با افزایش دما هم برای بستر سیال و هم برای بستر ثابت افزایش می‌یابد ولی در گستره دمایی وسیعی از تغییرات دمایی تقریباً ثابت و همواره در بستر سیال بیشتر از بستر ثابت است.

افزایش سرعت ورودی گاز (دبی خوراک) ورودی از 1/2 تا cm/s 1/12 (240 تا sccm 1355) باعث کاهش درصدتبدیل و انتخاب‌پذیری C2+ به ترتیب از مقدار 1/27% به 1/6% و 9/67% به 5/61% می‌شود (1=Air/CH4 و دمای بستر کاتالیستی= °C850).

کاهش میزان اکسیژن موجود در خوراک باعث افزایش انتخاب‌پذیری C2+ از 3/55% به 6/71% و کاهش درصد تبدیل متان از 2/32% به 6/25% می‌شود.

پیش­گفتار

متان جزء اصلی گاز طبیعی است که امروزه بعنوان سوختی پاک و نسبتاً ارزان بکار می‌رود. حجم عظیم گاز طبیعی در جهان که حدود 17% آن در کشور ایران است و همچنین مزایای اقتصادی بسیار بالای تبدیل متان به دیگر سوختها و یا مواد شیمیایی با ارزش‌تر، سبب گردیده تحقیقات گسترده‌تری نسبت به گذشته در طی دو دهه اخیر بر روی روشهای تبدیل متان به سوختهای هیدروکربنی مایع، اتیلن، دی متیل اتر، متانول و … متمرکز گردد. همچنین به دلیل غیر اقتصادی بودن انتقال گاز طبیعی به مراکز مصرف دور دست، تبدیل متان به مواد واسطه پتروشیمیایی و هیدروکربنهای مایع که به فرآیندهای OCM و GTL موسوم است، از دیر باز از اهمیت بسزایی برخوردار بوده است. گاز طبیعی، در آغاز هزاره سوم، دومین منبع انرژی ارزان موجود در جهان بوده و فراروانی و در دسترس بودن نسبی این گاز دلائل متقاعد کننده‌ای برای گسترش تحقیقات پیرامون این منبع می‌باشد. از طرفی نیاز جهانی به متانول و اتیلن بعنوان دو محصول عمده مطلوب ناشی از تبدیل گاز طبیعی، روزبه روز در حال افزایش بوده و امکان تولید اتیلن از متان، توجه مراکز تحقیقاتی دانشگاهی و صنعتی متعددی را جلب نموده است.

فرآیند تبدیل مستقیم متان به سایر مواد شیمیایی، به فرآیند زوج شدن اکسایشی متان (Oxidative Coupling of Methane) موسوم است که در آن متان با اکسیژن به اتان و اتیلن تبدیل می‌گردد که اتان هم به نوبه خود به اتیلن تبدیل می‌شود. محصولات ناخواسته اکسید‌های کربن هم طی این فرآیند تولید می‌شوند.

این فرآیند از سال 1980 مورد توجه قرار گرفت و کاتالیست‌های فراوانی جهت افزایش بازدهی این واکنش به کار گرفته شد. اما علاوه بر نوع کاتالیست، نوع راکتور و نحوه خوراک‌دهی تأثیر زیادی روی بازده و عملکرد این فرآیند دارد که در فصل اول این پایان نامه به طور مختصر روی انواع کاتالیستهای مورد استفاده و همچنین راکتورهای بکار گرفته شده بحث خواهیم کرد.

اما از عمده‌ترین موانع در توسعه فرآیند زوج شدن اکسایشی متان تولید دمای بالا در حین واکنش و بالتبع کاهش انتخاب‌پذیری نسبت به محصولات مطلوب است. بنابراین، محققین تلاش کردند تا با بکارگیری مهندسی واکنشها و طراحی راکتورهای مناسب جهت رفع این مشکل برآیند. یکی از این پیشنهادها بکار‌گیری راکتور‌های بستر سیال بود که در فصل دوم به مبانی مهندسی سیال سازی و در فصل سوم به تاریخچه علمی استفاده از این راکتور در فرآیند OCM پرداخته شده است.

فصل چهارم به توضیح روشهای انجام آزمایش‌ها اختصاص یافت. به دلیل اهمیت خاصیت اکسایشی- کاهشی کاتالیست در بهبود انتخاب‌پذیری محصولات اتان و اتیلن در این فرآیند، کاتالیست مورد استفاده در این تحقیق از میان کاتالیستهایی که دارای بالاترین بازده بوده و دارای خاصیت اکسایشی- کاهشی باشد انتخاب شد. به این ترتیب کاتالیست مورد نظر Mn-Na2WO4/SiO2 انتخاب شد که در فصل پنجم در ابتدا نتایج حاصل از بررسی خاصیت اکسایشی- کاهشی این کاتالیست آورده شده است و سپس به بررسی عملکرد واکنش زوج شدن اکسایشی متان در راکتور بستر سیال روی کاتالیست مزبور پرداخته شده است. نقش پارامترهای مهم عملیاتی مثل دمای بستر کاتالیستی، سرعت ورودی گاز (دبی حجمی خوراک) و غلظت اکسیژن در خوراک ورودی در راکتور بستر سیال مورد بررسی قرار گرفت و با کارهای قبلی مقایسه شد.

در فصل ششم، نتایج حاصل جمع‌بندی می‌شود و در نهایت پیشنهادهایی برای ادامه تحقیقات ارائه می‌شود.

در پایان فهرست منابع مورد استفاده آورده شده است و بدنبال آن پیوست‌ها شامل مثال‌های روش‌های محاسباتی استفاده شده و جزئیات محاسبات مربوط به ساخت گاز نرمال و کالیبره کردن دستگاه کروماتوگراف گازی آورده شده است.

فصل اول

زوج شدن اکسایشی متان

1-1- مقدمه

مصرف رو به رشد گاز طبیعی در جهان و روند رو به کاهش منابع فسیلی و تجدید ناپذیر در دنیا بیانگر تحولی بزرگ در چگونگی به کارگیری این منابع توسط بشر در سالهای آتی است. بنابراین نیاز است تا با اتخاذ شیوه‌هایی بتوان این منبع عظیم را به دیگر فرآورده‌های هیدروکربنی تبدیل کرد و از این طریق ارزش افزوده آن را افزایش داد. با توجه به منابع عظیم گاز طبیعی موجود در جهان و با توجه به این که بخش عمده گاز طبیعی را متان تشکیل می‌دهد و غیر اقتصادی بودن انتقال این گاز به مراکز مصرف کننده دوردست، تبدیل متان به مواد واسطه پتروشیمی و سوخت‌های مایع از دیر باز از اهمیت بسزایی برخوردار بوده است. گاز طبیعی در آغاز هزاره سوم، دومین منبع انرژی ارزان موجود در جهان بوده و فراوانی و در دسترس بودن نسبی این گاز دلایل متقاعد کننده‌ای برای گسترش تحقیقات پیرامون این منبع می‌باشد.

متان با انرژی پیوندی معادل kcal/mol 105 برآیند C–H یکی از پایدارترین آلکان‌ها به حساب می‌آ‌ید. از آنجا که پیش‌بینی می‌شود متان منبع اصلی مواد شیمیایی آینده را تشکیل دهد، با وجود پایداری این مولکول، پژوهش‌های بسیاری برای وارد کردن این مولکول در واکنش‌ها صورت گرفته است.

تحقیقات گسترده‌ای در طی دو دهه اخیر بر روی روش‌های تبدیل مستقیم متان به اتیلن، اتان، فرمالدئید، متانول و … انجام گرفته است. تبدیل متان به سایر مواد شیمیایی به دو روش کلی مستقیم و غیر مستقیم انجام می‌شود.

در روش غیر مستقیم ابتدا با استفاده از واکنش‌های رفرمینگ، متان با آب در دماهای بالا واکنش داده و به هیدروژن و منواکسید کربن تبدیل می‌‌شود. سپس این مخلوط به متانول یا سایر هیدروکربن‌های مایع تبدیل می‌گردد. در روش مستقیم محصولات حد واسط وجود نداشته و واکنش مستقیماً به تولید محصولات مورد نظر می‌انجامد.

برتری روش تبدیل غیر‌مستقیم به سوخت، عاری بودن محصولات آن از مواد رنگی، آلاینده و بدبو می‌باشد. گرچه این روش از نظر اقتصادی در سطح جهانی و به خصوص در مناطق نفت‌خیز توسعه زیادی نیافته است، اما پس از گذشت 80 سال هنوز هم فرآیند فیشر- تروپش یکی از مهمترین پروژه‌های تحقیقاتی در زمینه تبدیل غیر مستقیم متان به سوخت مایع می‌باشد وتلاشهای بسیاری در جهت تولید کاتالیزورهایی با بازده و طول عمر بالاتر صورت می‌گیرد تا این فرآیند تا حد امکان اقتصادی‌تر گردد.

 

(ممکن است هنگام انتقال از فایل ورد به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل است)

متن کامل را می توانید دانلود نمائید

چون فقط تکه هایی از متن پایان نامه در این صفحه درج شده (به طور نمونه)

ولی در فایل دانلودی متن کامل پایان نامه

همراه با تمام ضمائم (پیوست ها) با فرمت ورد word که قابل ویرایش و کپی کردن می باشند

موجود است


دانلود با لینک مستقیم


پایان نامه بررسی فعالیت و انتخاب‌پذیری کاتالیستهای اکسایشی – کاهشی (Redox)

بررسی فعالیت و انتخاب‌پذیری کاتالیستهای اکسایشی- کاهشی (Redox) در فرآیند زوج شدن اکسایشی متان در راکتور بستر سیال

اختصاصی از فایلکو بررسی فعالیت و انتخاب‌پذیری کاتالیستهای اکسایشی- کاهشی (Redox) در فرآیند زوج شدن اکسایشی متان در راکتور بستر سیال دانلود با لینک مستقیم و پر سرعت .

بررسی فعالیت و انتخاب‌پذیری کاتالیستهای اکسایشی- کاهشی (Redox) در فرآیند زوج شدن اکسایشی متان در راکتور بستر سیال


بررسی فعالیت و انتخاب‌پذیری کاتالیستهای اکسایشی- کاهشی (Redox) در فرآیند زوج شدن اکسایشی متان در راکتور بستر سیال

 

فرمت : Word

تعداد صفحات : 114

 

مقدمه

مصرف رو به رشد گاز طبیعی در جهان و روند رو به کاهش منابع فسیلی و تجدید ناپذیر در دنیا بیانگر تحولی بزرگ در چگونگی به کارگیری این منابع توسط بشر در سالهای آتی است. بنابراین نیاز است تا با اتخاذ شیوه‌هایی بتوان این منبع عظیم را به دیگر فرآورده‌های هیدروکربنی تبدیل کرد و از این طریق ارزش افزوده آن را افزایش داد. با توجه به منابع عظیم گاز طبیعی موجود در جهان و با توجه به این که بخش عمده گاز طبیعی را متان تشکیل می‌دهد و غیر اقتصادی بودن انتقال این گاز به مراکز مصرف کننده دوردست، تبدیل متان به مواد واسطه پتروشیمی و سوخت‌های مایع از دیر باز از اهمیت بسزایی برخوردار بوده است. گاز طبیعی در آغاز هزاره سوم، دومین منبع انرژی ارزان موجود در جهان بوده و فراوانی و در دسترس بودن نسبی این گاز دلایل متقاعد کننده‌ای برای گسترش تحقیقات پیرامون این منبع می‌باشد.

متان با انرژی پیوندی معادل kcal/mol 105 برآیند C–H یکی از پایدارترین آلکان‌ها به حساب می‌آ‌ید. از آنجا که پیش‌بینی می‌شود متان منبع اصلی مواد شیمیایی آینده را تشکیل دهد، با وجود پایداری این مولکول، پژوهش‌های بسیاری برای وارد کردن این مولکول در واکنش‌ها صورت گرفته است.

تحقیقات گسترده‌ای در طی دو دهه اخیر بر روی روش‌های تبدیل مستقیم متان به اتیلن، اتان، فرمالدئید، متانول و ... انجام گرفته است. تبدیل متان به سایر مواد شیمیایی به دو روش کلی مستقیم و غیر مستقیم انجام می‌شود.

در روش غیر مستقیم ابتدا با استفاده از واکنش‌های رفرمینگ، متان با آب در دماهای بالا واکنش داده و به هیدروژن و منواکسید کربن تبدیل می‌‌شود. سپس این مخلوط به متانول یا سایر هیدروکربن‌های مایع تبدیل می‌گردد. در روش مستقیم محصولات حد واسط وجود نداشته و واکنش مستقیماً به تولید محصولات مورد نظر می‌انجامد.

برتری روش تبدیل غیر‌مستقیم به سوخت، عاری بودن محصولات آن از مواد رنگی، آلاینده و بدبو می‌باشد. گرچه این روش از نظر اقتصادی در سطح جهانی و به خصوص در مناطق نفت‌خیز توسعه زیادی نیافته است، اما پس از گذشت 80 سال هنوز هم فرآیند فیشر- تروپش یکی از مهمترین پروژه‌های تحقیقاتی در زمینه تبدیل غیر مستقیم متان به سوخت مایع می‌باشد وتلاشهای بسیاری در جهت تولید کاتالیزورهایی با بازده و طول عمر بالاتر صورت می‌گیرد تا این فرآیند تا حد امکان اقتصادی‌تر گردد.

روش جا افتاده و معمول، تبدیل متان با بخار آب است که گاز سنتز (مخلوط گازی CO و H2 ) را به وجود می‌آورد، پس از آن با هیدروژن‌دار کردن CO، متانول تشکیل می‌شود:

 که متانول خود می‌تواند ماده اولیه برای تولید دیگر محصولات شیمیایی دیگر باشد. هم چنین در فرآیند فیشر-تروپش، از طریق بسپارش کاهشی منواکسید کربن و هیدروژن، هیدروکربن‌های خطی، اولفین‌های مختلف و الکل‌ها، تولید می‌گردند. در روش‌های مذکور، ابتدا متان به گاز سنتز تبدیل می‌شود و پس از آن طی فرآیند‌های فوق به محصولات سوختی مایع تبدیل می‌شود و به همین دلیل این روشها گران هستند، لذا فرآیند تبدیل مستقیم متان بیشتر مورد توجه دانشمندان قرار گرفته است.

در روش زوج شدن اکسایشی متان (OCM)[1]، متان با اکسیژن در حضور کاتالیزور به اتان، اتیلن، منواکسید کربن و دی‌اکسید کربن و آب تبدیل می‌شود. مانع اصلی در توسعه فن‌آوری OCM، بازدهی و گزینش‌پذیری پایین محصولات C2+ می‌باشد. با توجه به دمای بالای مورد نیاز (بیش از °C800) برای انجام واکنش OCM، دستیابی به روشی که این واکنش را در دماهای پایین‌تر و گزینش‌پذیری و بازدهی بالاتری میسر سازد، سبب اقتصادی نمودن این روش نسبت به تبدیل متان بر پایه گاز سنتز خواهد گردید.

1-2- زوج شدن اکسایشی متان

اتیلن محصول با ارزشی است که به عنوان مادر مواد پلیمری شناخته شده است. در حال حاضر این ماده با ارزش از طریق کراکینگ اتان، گازهای نفتی دیگر و یا نفتا تهیه می‌شود. این فرآیند‌ها گرماگیر هستند و به انرژی زیادی نیاز دارند در حالی که فرآیند تهیه اتیلن از متان (گاز طبیعی) از طریق زوج شدن اکسایشی متان (OCM) فرآیندی گرمازاست. به این ترتیب، علاوه بر این که از نظر انرژی کارایی بیشتری دارد، امکان استفاده از گاز طبیعی به عنوان منبعی برای تهیه ترکیبات شیمیایی با ارزش‌تر را نیز افزایش می‌دهد، همچنین متانول و اتیلن را می‌توان به سوخت مایع تبدیل کرد.

به این ترتیب با توجه به منابع عظیم شناخته شده گاز طبیعی در جهان که بالغ برm3 1014×35/1 گزارش شده است [1] و با توجه به مطالب ذکر شده در بالا، تبدیل مستقیم متان به هیدروکربن‌های با ارزش‌تر اهمیت ویژه‌ای دارد. در این میان اتیلن، متانول و گاز سنتز جایگاه ویژ‌ه‌ای دارند. این ترکیبات از طریق اکسایش جزئی بدست می‌آیند و از زمینه‌های تحقیقاتی مربوط به گاز طبیعی هستند.

کاتالیست‌های مناسب برای OCM معمولاً از دسته اکسیدهای فلزی یا مخلوط آنها هستند. نقش اولیه کاتالیست در واکنش OCM فراهم ساختن مسیر واکنشی است که در آن جدا ساختن یک هیدروژن از متان از طریق گونه‌های فعال اکسیژن سطحی تسهیل شده و درعین حال از واکنش‌های اکسیداسیون کامل جلوگیری شود. به همین دلیل کاتالیست باید قادر به تبدیل سریع اکسیژن فاز گاز به گونه‌های گزینش‌پذیر آن باشد تا واکنش‌های جنبی اکسیژن فاز گاز با هیدروکربن‌های C2 و رادیکالهای متیل که منجر به اکسیداسیون کامل آنها می‌گردد، کاهش یابند.


دانلود با لینک مستقیم


بررسی فعالیت و انتخاب‌پذیری کاتالیستهای اکسایشی- کاهشی (Redox) در فرآیند زوج شدن اکسایشی متان در راکتور بستر سیال