فرمت فایل: ورد ( قابلیت ویرایش )
قسمتی از محتوی متن ...
تعداد صفحات : 18 صفحه
معرفی روش جدید. مولفههای اصلی . Principle component در بیشتر مسائل عملی مشاهدات بصورت تعداد زیادی متغیرهای همبسته میباشند برای تحلیل اینگونه مشاهدات به دنبال روشهای آماری هستیم که بدون اینکه اطلاعاتی را از دست داده باشیم بعد مسأله را تا حد قابل ملاحظهای کاهش دهیم در حقیقت با کنار گذاشتن متغیرهای با واریانس پایین و توجه به متغیرهای با واریانس بالا میتوانیم به راحتی مسأله را در یک زیر فضایی با بعد کمتر مورد مطالعه قرار دهیم.
بردار تصادفی X را با بردار میانگین و ماتریس کواریانس یک بردار p بعدی در نظر می گیریم.
مولفههای اصلی x عبارتند از ترکیبات خطی استاندارد شده مولفه های x که بر حسب واریانس ها ویژگیهای خاصی دارند.
وزنهایی که در مولفه های اصلی به بردار تصادفی x مربوط میشوند و دقیقاً بردارهای ویژه استاندارد شده ماتریس کواریانس x هستند ریشههای ماتریس مشخصه کواریانس برابر مولفههای اصلی میباشند و بزرگترین ریشه برابر واریانس اولین مولفه اصلی است.
برای X هیچ توزیعی فرض نمیکنیم تنها شرط لازم برای تحلیل مولفههای اصلی این است که متغیرهای اصلی همبستگی معنیداری داشته باشند.
چنانچه مولفههای بردار X هم بعد یا هم واحد نباشند میتوان مقادیر ویژه متناظر با ماتریس همبستگی بردار را بدست آورد بکار بردن ماتریس همبستگی باعث استاندارد شدن متغیرها نسبت به واحد واریانس میگردد/.
بطور کلی اگر بردار X یک بردار تصادفی P متغیر باشد برای بدست آوردن مولفههای اصلی آن چنین عمل میکنیم.
ابتدا مقادیر ویژه مربوط به ماتریس کواریانس یا ماتریس همبستگی P را محاسبه می کنیم I ماتریس P بعدی همانی و یک ماتریس قطری باشد آنگاه اگر مولفه اصلی متناظر با متغیر باشد آنگاه = درصد تغییرات iمین مولفه به کل تغییرات پس از تعیین مقادیر ویژه بردارهای ویژه متناظر با هر یک از مقادیر محاسبه میگردد. مقدار اهمیت k مین متغیر اولیه یعنی را در iمین مولفه اصلی یعنی اندازه میگیرد.
ضریب همبستگی بین مولفههای و متغیر برابر است با واریانس K مین متغیر x است.
مقادیر ویژه مربوط به ماتریس همبستگی نمونه را محاسبه کرده و داریم: % واریانس تجمعی % واریانس مقادیر ویژه مولفه 61/764 61/764 4/323 1 71/743 9/980 0/699 2 79/765 8/022 0/562 3 89/466 6/701 0/469 4 92/634 6/168 0/432 5 96/469 3/835 0/268 6 100/00 3/531 0/247 7 = نسبت تغییرات مولفه اول به کل تغییرات تحلیل عاملی Factor Analysis تحلیل عاملی شامل هر دو روش تحلیل مولفهها (Component) و تحلیل عاملهای مشترک (Common Factors) میباشد.
کاربردهای اصلی تحلیل عاملی عبارتست از : 1- کاهش تعداد متغیرها Data Reduction 2- گروه بندی متغیرها Classing Variables در تحلیل مولفه اصلی همه پراکندگی مربوط به یک متغیر در تحلیل بکار برده میشود در صورتیکه در تحلیل فاکتورهای (عاملهای) اصلی ما فقط آن قسمت از پراکندگی متغیر را که با سایر متغیرها مشترک است، بررسی می کنیم.
تحلیل عاملی در حدود صد سال پیش توسط یک روانشناس بنام چارلز اسپیرمن ابداع شد.
او توسط این روش به این نتیجه رسید که در یک زیر جا
متن بالا فقط تکه هایی از متن به صورت نمونه در این صفحه درج شده است.شما بعد از پرداخت آنلاین فایل را فورا دانلود نمایید
بعد از پرداخت ، لینک دانلود را دریافت می کنید و ۱ لینک هم برای ایمیل شما به صورت اتوماتیک ارسال خواهد شد.
تحقیق درمورد متغیرهای وابسته