قسمتی از محتوای متن ...
تعداد صفحات : 10 صفحه
انتگرال : در حساب دیفرانسیل و انتگرال ، از انتگرال یک تابع برای عمومیت دادن به محاسبه مساحت ، حجم ، جرم یک تابع استفاده می شود.
فرایند پیدا کردن جواب انتگرال را انتگرال گیری گویند.البته تعاریف متعددی برای انتگرال گیری وجود دارد ولی در هر حال جواب مشابه ای از این تعاریف بدست می آید.
انتگرال یک تابع مثبت پیوسته در بازه (a,b) در واقع پیدا کردن مساحت بین خطوط x=0 , x=10 و خم منفی F است .
پس انتگرال F بین a و b در واقع مساحت زیر نمودار است.
اولین بار لایب نیتس نماد استانداری برای انتگرال معرفی کرد و به عنوان مثال انتگرال f بین a و b رابه صورت نشان می دهند علامت ،انتگرال گیری از تابع f را نشان می دهند ،aو b نقاط ابتدا و انتهای بازه هستند و f تابعی انتگرال پذیر است و dx نمادی برای متغیر انتگرال گیری است.
انتگرال یک تابع مساحت زیر نمودار آن تابع است.
از لحاظ تاریخی dx یک کمیت بی نهایت کوچک را نشان می دهد.
هر چند در تئوریهای جدید، انتگرال گیری بر پایه متفاوتی پایه گذاری شده است به عنوان مثال تابع f را بین x=0 تا x=10 در نظر بگیرید ،مساحت زیر نمودار در واقع مساحت مستطیل خواهدبود که بین x=0 ،x=10 ،y=0 ،y=3 محصور شده است یعنی دارای طول 10 و عرض 3است پس مساحت آن برابر 30 خواهد بود .
اگر تابعی دارای انتگرال باشد به آن انتگرال پذیر گویند و تابعی که از انتگرال گیری از یک تابع حاصل می شود تابع اولیه گویند .
اگر انتگرال گیری از تابع در یک محدوده خاص باشند به آن انتگرال معین گویند که نتیجه آن یک عدد است ولی اگر محدوده آن مشخص نباشد به آن انتگرال نامعین گویند.
محاسبه انتگرال اکثر روش های اساسی حل انتگرال بر پایه قضیه اساسی حساب دیفرانسیل و انتگرال بنا نهاده شده است که بر طبق آن داریم: 1.f تابعی در بازه (a,b) در نظر می گیریم .
2.پاد مشتق f را پیدا می کنیم که تابعی است مانند f که و داریم: 3.قضیه اساسی حساب دیفرانسیل و انتگرال را در نظر می گیریم: بنابراین مقدار انتگرال ما برابر خواهد بود.
به این نکته توجه کنید که انتگرال واقعاً پاد مشتق نیست (یک عدد است) اما قضیه اساسی به ما اجازه می دهد تا از پاد مشتق برای محاسبه مقدار انتگرال استفاده کنیم .
معمولاً پیدا کردن پاد مشتق تابع f کار ساده ای نیست و نیاز به استفاده از تکنیکهای انتگرالگیری دارد این تکنیکها عبارتند از : انتگرال گیری بوسیله تغییر متغیر انتگرال گیری جزء به جزء انتگرال گیری با تغییر متغیر مثلثاتی انتگرال گیری بوسیله تجزیه کسرها روش هایی دیگر نیز وجود دارد که برای محاسبه انتگرالهای معین به کار می رود همچنین می توان بعضی از انتگرال ها با ترفند هایی حل کرد برای مثال می توانید به انتگرال گاوسی مراجعه کنید .
تقریب انتگرالهای معین محاسبه سطح زیر نمودار بوسیله مستطیل هایی زیر نمودار.هر چه قدرعرض مستطیل ها کوچک میشوندمقدار دقیق تریاز مقدار انتگرال بدست میآید.
انتگرال هایی معین ممکن است با استفاده از روش های انتگرال گیری عددی ،تخمین زده شوند.یکی از عمومی ترین روش ها ،روش مستطیلی نامیده می شود در این روش ناحیه زیر نمودار تابع به یک سری مستطیل تبدیل شده و جمع مساحت آنها نشان دهنده مقدار تقریبی انتگرال ا
متن بالا فقط تکه هایی از محتوی متن مقاله میباشد که به صورت نمونه در این صفحه درج شدهاست.شما بعد از پرداخت آنلاین ،فایل را فورا دانلود نمایید
لطفا به نکات زیر در هنگام خرید دانلود مقاله : توجه فرمایید.
- در این مطلب،محتوی متن اولیه قرار داده شده است.
- به علت اینکه امکان درج تصاویر استفاده شده در ورد وجود ندارد،در صورتی که مایل به دریافت تصاویری از ان قبل از خرید هستید، می توانید با پشتیبانی تماس حاصل فرمایید.
- پس از پرداخت هزینه ،ارسال آنی مقاله یا تحقیق مورد نظر خرید شده ، به ادرس ایمیل شما و لینک دانلود فایل برای شما نمایش داده خواهد شد.
- در صورت مشاهده بهم ریختگی احتمالی در متون بالا ،دلیل آن کپی کردن این مطالب از داخل متن میباشد ودر فایل اصلی این ورد،به هیچ وجه بهم ریختگی وجود ندارد.
- در صورتی که محتوی متن ورد داری جدول و یا عکس باشند در متون ورد قرار نخواهند گرفت.
- هدف اصلی فروشگاه ، کمک به سیستم آموزشی میباشد.
- بانک ها از جمله بانک ملی اجازه خرید اینترنتی با مبلغ کمتر از 5000 تومان را نمی دهند، پس تحقیق ها و مقاله ها و ... قیمت 5000 تومان به بالا میباشد.درصورتی که نیاز به تخفیف داشتید با پشتیبانی فروشگاه درارتباط باشید.
دانلود فایل پرداخت آنلاین