فایلکو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

فایلکو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

تحقیق درباره سیستم های عدد نویسی

اختصاصی از فایلکو تحقیق درباره سیستم های عدد نویسی دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 5

 

سیستم های عدد نویسی

صفحه بعد   صفحه قبل

 

محاسبات کامپیوتری در مبنای دو انجام می شود. به طور معمول از سیستم عددی هگزادسیمال برای نمایش اعداد باینری استفاده می شود.

سیستم های عدد نویسیسیستم عددی اعشاریسیستم عددی دودوئیسیستم عددی هگز

 

سیستم های عدد نویسی

در کارهای روزمره از سیستم عددی اعشاری یا مبنای 10 استفاده می شود. این سیستم برای کامپیوتر مناسب نیست و برای سادگی سخت افزار، کلیه اطلاعات به شکل بیت های روشن و خاموش رمز می شوند. بنابراین سیستم عددی باینری که تنها شامل ارقام صفر و یک است برای این منظور بسیار مناسب است. عدد 1 (on) مشخص کننده +5 ولت و عدد صفر (off) مشخص کننده 0.5 ولت است.

برای تعیین مبنای عدد یک حرف کوچک در انتهای آن قرار می گیرد. مثاال 45h به معنی عدد 45 در مبنای شانزده است. و 11010011b یعنی این عدد در مبنای 2 است. این روشی است که اسمبلر اعداد را در برنامه های اسمبلی تشخیص می دهد.

 

سیستم عددی اعشاری (Decimal)

اعداد اعشاری یا مبنای 10 از 10 رقم (0 تا 9) تشکیل شده اند. هر رقم به توانی از 10 مرتبط است که نشان دهنده ارزش مکانی رقم در عدد است.

234 = 2 × 102 + 3 × 101 + 4 × 100     = 200 + 30 + 4

 

سیستم عددی دودوئی (binary)

سیستم باینری بر اساس تنها دو وضعیت است: روشن (1) یا خاموش (0)، بنابراین درمبنای 2 است. یک رقم باینری یک بیت نامیده می شود (در واقع کلمه Bit مخفف Binary Digit است).

 

جدول توان های 2جدول نمایش اعداد 0 تا 15 در مبنای دو

 

تبدیل باینری به اعشاری

مقدار یک عدد باینری بر اساس بیت های 1 و ارزش مکانی آنها بدست می آید. ارزش مکانی هر بیت توانی از 2 است. برای محاسبه مقدار اعشاری یک عدد باینری، کافی است هر رقم از راست به چپ در ارزش مکانی اش ضرب شده سپس کلیه اعداد با هم جمع شوند.

 

مثال 1. تبدیل عدد 11001b به مبنای 10.

Binary: 11001Decimal: 1 × 2^4 + 1 × 2^3 + 0 × 2^2 + 0 × 2^1 + 1 × 2^0     = 16 + 8 + 0 + 0 + 1     = 25

مثال 2. تبدیل عدد باینری 10010000 به مبنای 10.

Binary: 1 0 0 1 0 0 0 0Decimal: 1×2^7 + 0×2^6 + 0×2^5 + 1×2^4 + 0×2^3 + 0×2^2 + 0×2^1 + 0×2^0     =128 + 0 + 0 + 16 + 0 + 0 + 0 + 0     =144

کاراکتر ^ نشان دهنده عمل توان است.

 

تبدیل اعشاری به باینری

چندین روش برای تبدیل اعداد اعشاری به باینری وجود دارد. یک روش متداول تقسیم های متوالی بر 2 است. به این ترتیب که عدد اعشاری بر 2 تقسیم می شود، باقیمانده بعنوان رقم باینری نگهداشته و خارج قسمت مجدد بر 2 تقسیم می شود این عمل تا زمانی که خارج قسمت صفر شود ادامه پیدا می کند.

 

مثال. تبدیل عدد 43 به مبنای 2

عدد

خارج قسمت

باقیمانده

43 ÷ 2

21

1

21 ÷ 2

10

1

10 ÷ 2

5

0

5 ÷ 2

2

1

2 ÷ 2

1

0

1 ÷ 2

0

1

با قرار دادن باقیمانده های تقسیم از پایین به بالا عدد باینری 101011 بدست می آید.

 

جمع اعداد باینری

جمع باینری ساده به صورت زیر محاسبه می شود:

0 + 0 = 00 + 1 = 11 + 1 = 101 + 1 + 1 = 11

برای جمع و عدد باینری کافی است بیت به بیت از سمت راست به چپ عمل جمع انجام شود. رقم نقلی حاصل از هر ستون در جمع ستون بعدی اعمال می شود.

1

1

1

1

0

1

1

+

0

0

0

0

1

 

1

1

1

0

0

سیستم عددی هگز (Hexadecimal)

هگزادسیمال (یا به طور خلاصه هگز) روش فشرده تری را برای نمایش اعداد باینری ارائه می دهد به همین دلیل توسط اسمبلر و دیباگر برای مختصر نوشتن اعداد باینری بکار می رود.

اعداد هگز مبنای 16 را استفاده می کنند و از 16 رقم (0-15) تشکیل شده اند. برای نمایش ارقام بعد از 9 از حروف A تا F استفاده می شود. به عبارت دیگر 16 رقم هگز شامل 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F است که حروف A-F ارقام 10-15 را نشان می دهند (A=10، B=11، C=12، D=13، E=14 وF=15).

هر رقم هگز معادل چهار بیت باینری است. یک عدد چهار بیتی یک نیبل (Nibble) نام دارد. پس هر رقم هگز معادل یک نیبل است. دو نیبل یک بایت (Byte) را می سازد بنابراین هر بایت می تواند دو رقم هگز را نشان بدهد. مقدار یک بایت می تواند از 00000000 تا 11111111 باینری، 00 تا FF در هگز و 0 تا 255 در دسیمال باشد.

 

تبدیل هگز به اعشاری

ارزش هر رقم هگز با توانی از 16 مشخص می شود. برای تبدیل اعداد از مبنای 16 به 10 هر رقم عدد در ارزش مکانی اش ضرب می شود.

 

جدول توان های 16 در مبنای 10

جدول اعداد 0 تا 15 به صورت باینری و هگز

 

مثال. تبدیل عدد 3BA4h به مبنای 10.

Hex : 3BA4Decimal: 3×16^3 + 11×16^2 + 10×16^1 + 4× 16^0     = 3×4096 + 11×256 + 10×16 + 4×1     = 15268

 

تبدیل اعشاری به هگز

برای تبدیل دسیمال به هگز مانند باینری تقسیم های متوالی بر 16 انجام می شود.

 

مثال. تبدیل عدد 589 به هگز

عدد

خارج قسمت

باقیمانده

589 ÷ 16

36

13

36 ÷ 16

2

4

2 ÷ 16

0

2

با قرار دادن باقیمانده های تقسیم از پایین به بالا عدد باینری 24D بدست می آید.

 

تبدیل هگز به باینری

تبدیل هگز به باینری ساده است. کافی است هر رقم هگز به یک عدد چهار رقمی باینری تبدیل شود.

 

مثال. تبدیل عدد 160794h به باینری.

Hex: 1 6 0 7 9 4Binary: 0001 0110 0000 0111 1001 010

توجه کنید که صفرهای ابتدای چهار بیت اهمیت دارند. اگر این صفرها برای ارقام میانی قرار نگیرند حاصل اشتباه است.

 

تبدیل باینری به هگز

تبدیل از باینری به هگز هم ساده است. ابتدا عدد باینری از راست به چپ به گروه های چهاربیتی تقسیم شده (اگر آخرین گروه سمت چپ کمتر از چهار بیت بود صفر اضافه می شود)، سپس هر بخش به یک رقم هگز تبدیل می شود.

 

مثال. تبدیل عدد 101100000011110010100b به هگز

Binary: 0001 0110 0000 0111 1001 0100Hex : 1 6 0 7 9 4= 160794h

 

جمع اعداد در هگزادسیمال

چند جمع ساده در مبنای 16.

7 + 3 = A6 + 7= DF + 1 = 10


دانلود با لینک مستقیم


تحقیق درباره سیستم های عدد نویسی

مقاله درباره تاریخچه عدد صفر

اختصاصی از فایلکو مقاله درباره تاریخچه عدد صفر دانلود با لینک مستقیم و پر سرعت .

مقاله درباره تاریخچه عدد صفر


مقاله درباره تاریخچه عدد صفر

لینک پرداخت و دانلود در "پایین مطلب"

 فرمت فایل: word (قابل ویرایش و آماده پرینت)

 تعداد صفحات:7

تاریخچه عدد صفر

یکی از معمول ترین سئوالهائی که مطرح می شود این است که: چه کسی صفر را کشف کرد؟ البته برای جواب دادن به این سئوال بدنبال این نیستیم که بگوئیم شخص خاصی صفر را ابداع و دیگران از آن زمان به بعد از آن استفاده می کردند.

اولین نکته شایان ذکر در مورد عدد صفر این است که این عدد دو کاربرد دارد که هر دو بسیار مهم تلقی می شود یکی از کاربردهای عدد صفر این است که به عنوان نشانه ای برای جای خالی در دستگاه اعداد (جدول ارزش مکانی اعداد) بکار می رود. بنابراین در عددی مانند 2106 عدد صفر استفاده شده تا جایگاه اعداد در جدول مشخص شود که بطور قطع این عدد با عدد 216 کاملاً متفاوت است. دومین کاربرد صفر این است که خودش به عنوان عدد بکار می رود که ما به شکل عدد صفر از آن استفاده می کنیم.

هیچکدام از این کاربردها تاریخچه پیدایش واضحی ندارند. در دوره اولیه تاریخ کاربرد اعداد بیشتر بطور واقعی بوده تا عصر حاضر که اعداد مفهوم انتزاعی دارند. بطور مثال مردم دوران باستان اعداد را برای شمارش تعداد اسبان، ... بکار می برند و در اینگونه مسائل هیچگاه به مسئله ای برخورد نمی کردند که جواب آن صفر یا اعداد منفی باشد.

بابلیها تا مدتها در جدول ارزش مکانی هیچ نمادی را برای جای خالی در جدول بکار  نمی بردند. می توان گفت از اولین نمادی که آنها برای نشان دادن جای خالی استفاده کردن گیومه (") بود. مثلاً عدد6"21 نمایش دهنده 2106 بود. البته باید در نظر داشت که از علائم دیگری نیز برای نشان دادن جای خالی استفاده می شد ولیکن هیچگاه این علائم به عنوان آخرین رقم آورده نمی شدندبلکه همیشه بین دو عدد قرار می گیرند بطور مثال عدد "216 را با این نحوه علامت گذاری نداریم.  به این ترتیب به این مطلب  پی می بریم که کاربرد اولیه عدد صفر برای نشان دادن جای خالی اصلاً به عنوان یک عدد نبوده است.


دانلود با لینک مستقیم


مقاله درباره تاریخچه عدد صفر

دانلود پاورپوینت در مورد کتاب ریاضی چهارم دبستان (تقسیم بر عدد یک رقمی)

اختصاصی از فایلکو دانلود پاورپوینت در مورد کتاب ریاضی چهارم دبستان (تقسیم بر عدد یک رقمی) دانلود با لینک مستقیم و پر سرعت .

دانلود پاورپوینت در مورد کتاب ریاضی چهارم دبستان (تقسیم بر عدد یک رقمی)


دانلود پاورپوینت در مورد کتاب ریاضی چهارم دبستان (تقسیم بر عدد یک رقمی)

پاورپوینت در مورد کتاب ریاضی چهارم دبستان (تقسیم بر عدد یک رقمی)

فرمت فایل: پاورپوینت

تعداد اسلاید: 12

 

 

 

 

تقسیم دو رقمی بر یک رقمی

 

برای شروع درس ، با یک مثال مبحث را آغاز می کنیم .

39 از 3 ده تایی و 9 تا یکی درست شده است .

ابتدا می بینیم در 3 ده تایی یعنی 30 تا ، چند تا 3 تا وجود دارد که می بینیم 10 تا 3 تا وجود دارد و سپس می بینیم در 9 یکی چند تا 3 تایی وجود دارد که می بینیم که سه تا سه تا وجود دارد .


دانلود با لینک مستقیم


دانلود پاورپوینت در مورد کتاب ریاضی چهارم دبستان (تقسیم بر عدد یک رقمی)

دانلود پاورپوینت کسر و عدد مخلوط مقایسه و ساده کردن کسرها.

اختصاصی از فایلکو دانلود پاورپوینت کسر و عدد مخلوط مقایسه و ساده کردن کسرها. دانلود با لینک مستقیم و پر سرعت .

دانلود پاورپوینت کسر و عدد مخلوط مقایسه و ساده کردن کسرها.


دانلود پاورپوینت کسر و عدد مخلوط مقایسه و ساده کردن کسرها.

پاورپوینت کسر و عدد مخلوط مقایسه و ساده کردن کسرها

فرمت فایل: پاورپوینت

تعداد اسلاید: 12

 

 

 

 

عدد مخلوط

کسرهای بزرگتر از واحد را می توان به شکل اعداد مخلوط نیز نشان داد.


دانلود با لینک مستقیم


دانلود پاورپوینت کسر و عدد مخلوط مقایسه و ساده کردن کسرها.