فایلکو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

فایلکو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

تحقیق درباره تاریخچه سیستم سوخت رسانی انژکتوری دیزلی

اختصاصی از فایلکو تحقیق درباره تاریخچه سیستم سوخت رسانی انژکتوری دیزلی دانلود با لینک مستقیم و پر سرعت .

تحقیق درباره تاریخچه سیستم سوخت رسانی انژکتوری دیزلی


تحقیق درباره تاریخچه سیستم سوخت رسانی انژکتوری دیزلی

فرمت فایل : WORD (لینک دانلود پایین صفحه) تعداد صفحات 12 صفحه

 

 

 

 

 

تاریخچه سیستم سوخت رسانی انژکتوری دیزلی:

 تنها تفاوت موتور دیزل و بنزینی برای سالها فقط سیستم سوخت رسانی انژکتوری بود که مخصوص موتور دیزل بود ودر سایر سیستم ها هردونوع موتور تقریبا عین یکدیگر هستند. با این حال بیان تاریخچه ای مستقل برای سیستم سوخترسانی موتور دیزل لطف دیگری دارد . موتور دیزل اختراع رودولف دیزل در اواخر قرن 19 میلادی است . ایده موتوردیزل در جوانی به ذهن رودولف رسید وتاآخرعمر برای تحقق آن تلاش کرد . هرچند ایده اولیه آن کاملا متعلق به دیزل نیست ولی این رودولف دیزل بود که این ایده را کامل کرد وبه عمل رساند . کمپرس هوای خالص و بدون هیچگونه سوخت تا مرز دمای احتراق سوخت وسپس تزریق سوخت بصورت پودر در هوای بسیار داغ وفشرده هنوز هم بعد ازگذشت یک قرن ایده ناب و کاملی است برای داشتن بهترین احتراق با حداکثر راندمان درعمل و حداقل آلودگی بصورت گازهای سمی . در یک موتور دیزل هوا حداقل باید تا یک هفدهم کمپرس شود ؛ تزریق سوخت مایع به درون محفظه ای با این فشار کار بسیار مشکلی است بخصوص که سوخت تزریق شده باید بصورت پودر باشد و همچنین زمان دقیق اسپره کردن سوخت تاثیر حیاتی در کارکرد موتور دیزل دارد . تزریق سوخت باچنین شرایطی در هوایی با900 درجه سانتیگراد دما است که پس ازتزریق دما تا2200 درجه نیز می رسد. فراهم آوردن ابزار سوخترسانی برای چنین ایده ای سالها ازوقت رودولف راگرفت پس از آنکه تمام سالهای جوانیش راصرف تحقیق درزمینه نوع سوخت وشرایط چنین احتراقی کرد.


دانلود با لینک مستقیم


تحقیق درباره تاریخچه سیستم سوخت رسانی انژکتوری دیزلی

دانلود تحقیق کامل درمورد سوخت هسته ای و فرآیند آن

اختصاصی از فایلکو دانلود تحقیق کامل درمورد سوخت هسته ای و فرآیند آن دانلود با لینک مستقیم و پر سرعت .

دانلود تحقیق کامل درمورد سوخت هسته ای و فرآیند آن


دانلود تحقیق کامل درمورد سوخت هسته ای و فرآیند آن

 

 

 

 

 

 

لینک پرداخت و دانلود *پایین مطلب*

فرمت فایل: Word (قابل ویرایش و آماده پرینت)

تعداد صفحه :64

 

بخشی از متن مقاله

پسماندهای هسته ای

علی رغم سابقه به وضوح ایمن در طول نیم قرن گذشته، امروزه یکی از بحث برانگیزترین جنبه های چرخه سوخت هسته ای مسئله مدیریت و دفع پسماندهای پرتوز است.

P1 مشکل ترین مسئله، پسماندهای سطح بالا هستند، و دو سیاست مختلف برای مدیریت آنها وجود دارد:

  • بازفرآوری سوخت مصرف شده برای جدا کردن آنها (که با شیشه ای کردن و دفع کردن آنها ادامه می یابد) یا
  • دفع مستقیم سوخت مصرف شده دارای پرتوزایی سطح بالا به صورت پسماند.

پسماندهای هسته ای اصلی در سوخت راکتور سفالی محفوظ باقی می مانند.

P2 همانطور که در فصل‌های 3و4 به طور خلاصه گفته شد، “سوزاندن” سوخت در قلب راکتور محصولات شکافتی تولید می کند به مانند ایزوتوپ های مختلف باریم، استرونسیم، نریم، ید، کریپتون و گرنون (Ba، Sr، Cs، I، Kr، Xe). بیشترین ایزوتوپ‌های شکل گرفته به صورت محصولات شکافت در سوخت به شدت پرتوزا هستند و متعاقباً عمرشان کوتاه است.

P3 علاوه بر این اتم های کوچکتر به وجود آمده از شکافت سوخت، ایزوتوپ‌های ترااورانومی مختلفی هم با جذب نوترون تشکیل می شوند. از جمله اینها پلوتونیوم- 239، پلوتونیوم- 240 و پلوتونیوم- 241[1]، به علاوه محصولات دیگری هستند که از جذب نوترون توسط u-2381 در قلب راکتور و سپس تلاشی بتا به عمل می آیند. همه اینها پرتوزا هستند و به غیر از پلوتونیوم شکافت پذیر که “می‌سوزد”، در سوخت مصرف شده ای که از راکتور برداشته می شود باقی می مانند. ایزوتوپ های ترا اورانیوم و دیگر اکتنیدها[2] بیشترین قسمت از پسماندهای سطح بالای با طول عمر زیاد را شکل می دهند.

P4 در حالی که چرخه سوخت هسته ای صلح آمیز، پسماندهای مختلفی تولید می‌کند، این پسماندها “آلودگی” به شمار نمی آیند، زیرا در عمل همه آنها نگهداری و مدیریت می شوند، در غیر این صورت است که خطرناک خواهند بود. در حقیقت توان هسته ای تنها صنعت تولید انرژی است که مسئولیت کامل همه پسماندهایش را برعهده گرفته و هزینه آن را به طور کامل بر قیمت تولیداتش اضافه می کند. وانگهی هم اکنون مهارت های به دست آمده در مدیریت پسماندهای غیر نظامی در حال شروع به اعمال شدن به پسماندهای نظامی است که یک مشکل محیط زیستی جدی در چند نقطه جهان ایجاد کرده است.

پسماندهای پرتوزا مواد گوناگونی را شامل می شوند که از جهت محافظت مردم و محیط زیست اقدامات متفاوتی را طلب می کنند. مدیریت و دفع آنها از نظر فن آوری سر راست است.

P5 این پسماندها براساس مقدار و نوع پرتوزایی موجود در آنها معمولاً به سه دسته تحت عنوان های پسماندهای سطح پایین سطح متوسط و سطح بالا دسته بندی می‌شوند.

P6 عامل دیگر در مدیریت پسماندها مدت زمانی است که آنها ممکن است خطرناک باقی بمانند. این زمان به نوع ایزوتوپ های پرتوزای موجود در آنها و به خصوص مشخصه نیمه عمر هر یک از این ایزوتوپ ها بستگی دارد. نیمه عمر مدت زمانی است که طی می شود تا یک ایزوتوپ پرتوزا نیمی از پرتوزائیش را از دست بدهد. پس از چهار نیمه عمر سطح پرتوزایی به  مقدار اولیه آن و پس از هشت نیمه عمر به  آن می رسد.

P7 ایزوتوپ های پرتوزای مختلف نیمه عمرهایی دارند که از کسری از ثانیه تا دقیقه‌ها، ساعات یا روزها، حتی تا میلیون ها سال گسترده شده اند. پرتوزایی با گذشت زمان، همانطور که این ایزوتوپ ها به ایزوتوپ های پایدار غیر پرتوزا تلاش می کنند کم می شود.

P8 آهنگ تلاشی یک ایزوتوپ با عکس نیمه عمرش متناسب است. یک نیمه عمر کوتاه به معنای تلاشی سریع است. بنابراین، برای هر نوع پرتوزایی، شدت پرتوزایی بالاتر در یک مقدار ماده داده شده مستلزم کوتاه‌تر بودن نیمه عمر است.

P9 سه اصل کلی برای مدیریت پسماندهای پرتوزا بکار گرفته می شود:

  • تغلیظ و نگهداری concentrate-and-cantain
  • تضعیف و پراکنش dilute- and disparoe
  • تأخیر و تلاش delay-and-decay

P10 دو تای اول در مورد مدیریت پسماندهای غیر پرتوزا هم به کار می روند. پسماندها یا تغلیظ شده و سپس متروی می شوند، یا (برای مقادیر خیلی کم) تا سطح قابل قبولی تضعیف شده و سپس به محیط زیست باز گردانده می شوند. با این وجود تأخیر و تلاشی منحصر به مدیریت پسماندهای پرتوزاست و به این معنی است که پسماند ذخیره و اجازه داده می شود که پرتوزایی آن از طریق تلاشی طبیعی ایزوتوپ‌های موجود در آن کم شود.

در چرخه سوخت هسته ای غیرنظامی توجگه اصلی بر پسماندهای سطح بالاست که حاوی محصولات شکافت و عناصر ترا اورانیومی تشکیل شده در قلب راکتور هستند.

P11 پسماند سطح بالا: ممکن است خود سوخت مصرف شده یا پسماند اصلی حاصل از باز پردازش آن باشد. در هر دو حال این حجم متوسطی دارد- در حدود 30-25 تن سوخت مصرف شده یا سه مترمکعب پسماند شیشه ای شده در سال برای یک نمونه راکتور هسته ای بزرگ (1000 MWC، نوع آب سبک). این حجم می تواند به صورت موثر و اقتصادی ایزوله شود. سطح پرتوزایی آن به سرعت کم می شود. به عنوان نمونه، یک مجموعه سوخت راکتور آب سبک تازه تخلیه شده آن قدر پرتوزایی دارد که چند صد کیلو وات گرما می پراکند، اما پس از یک سال این مقدار به 5kw و پس از پنج سال به یک کیلووات می رسد. ظرف مدت 40 سال پرتوزایی آن به حدود یک هزارم مقدار آن هنگام تخلیه می رسد.

P12 اگر سوخت مصرف شده بازفرآوری شود، %3 آن که به صورت پسماند سطح بالا ظاهر می شود، عمدتاً مایع است و حاوی “خاکستر” اورانیوم سوخته شده است. این پسماند که شامل محصولات شکافت به شدت پرتوزا و چند عنصر سنگین با پرتوزایی دراز مدت است، مقدار قابل توجهی گرما تولید می کند و باید خنک شود. این به صورت شیشه بورو سیلیکات[3] (شبیه به پیرکتن) و به منظور پوشینه‌داری، ذخیره سازی میان مدت، و دفع نهایی در اعماق زمین شیشه ای می شود. این سیاستی است که توسط بریتانیا، فرانسه، آلمان، ژاپن، چین و هند اتخاذ می شود. (بخش های 5-2 و 5-3 را ببینید)

P13 از طرف دیگر، اگر سوخت مصرف شده راکتور باز پردازش نشود، همه ایزوتوپ های با پرتوزایی بالا و اکتنیدهای دراز عمر در آن باقی می‌مانند، و در این صورت همه مجموعه های سوخت به شکل پسماند سطح بالا رفتار می کنند. گزینه دفع مستقیم توسط امریکا، کانادا و سوئد دنبال می شود، بخش 5-4 را بینید.

P14 تعدادی از کشورها انتخابی بین بازپردازی و دفع مستقیم را گردن نهاده اند.

P15 پسماندهای سطح بالا تنها %3 حجم کل پسماندهای پرتوزای جهان را تشکیل می‌دهند، اما 95% کل پرتوزایی از آنهاست.

P16 علاوه بر پسماندهای سطح بالای حاصل از تولید توان هسته‌ای، هرگونه استفاده از مواد پرتوزا در بیمارستان ها، آزمایشگاه ها و صنایع آنچه را که (پسماندهای سطح- پایین) نامیده می شود، تولید می کند. رسیدگی کردن اینها خطرناک نیست اما باید با دقتی بیش از زباله‌های معمولی دفع شوند. پسماندهای هسته ای از بیمارستان‌ها. دانشگاهها و صنایع به علاوه صنایع توان هسته ای می آیند، آنها می توانند خاکستر شوند و معمولاً دست آخر در محل های دفن زباله کم عمقی چال می شوند. نشان داده شده است که این روش موثری برای مدیریت پسماند این چنین مواد نسبتاً بی‌خطری است به شرطی که همه مواد بسیار سمی ابتدا جدا شده و جزء پسماندهای سطح بالا قرار گیرد.

کشورهای زیادی دارای مخازن پایانی فعال برای پسماندهای سطح پایین هستند. پسماندهای سطح پایین تقریباً همان پرتوزایی را دارند که سنگ معدن لورانیوم مرتبه پایین دارد و هم آنها بالغ بر بیش از پنجاه برابر پسماندهای سطح بالای سالانه است. در کل جهان این پسماندها 90% کل حجم را تشکیل می دهند اما فقط 1% پرتوزایی کل همه پسماندهای پرتوزا را دارند.

]پسماندهای سطح متوسط[ بیشتر از صنایع هسته ای می آیند. آنها پرتوزاتر هستند و باید پیش از رسیدگی و دفع در برابر مردم حفاظ گذاری نشوند و شامل درین‌ها، رسوب‌های شیمیایی و اجزای راکتور به علاوه مواد آلوده مربوط به از رده خارج کردن راکتورها می شوند. این پسماندها برای دفع بیشتر در بتون قرار داده می شوند. معمولاً پسماند کوتاه عمر (بیشتر از راکتورها) دفن می شود، اما پسماند دراز عمر (از سوخت هسته ای بازفرآوری شده) در اعماق زیر زمین دفع می شوند. پسماندهای سطح میانی 7% حجم پسماندهای پرتوزای و 4% پرتوزایی جهان را تشکیل می دهند.


 بازفرآوری سوخت مصرف شده

مهمترین دلیل برای بازفرآوری بیرون کشیدن اورانیوم و پلوتونیوم مصرف نشده از عناصر سوخت مصرف شده است. دلیل دوم کاهش حجم موادی است که به صورت پسماند سطح بالا دفع می شوند.

P1 بازفرآوری از هدر رفتن مقدار قابل توجهی از منابع جلوگیری می کند زیرا بیشتر سوخت مصرف شده (اورانیومی با کمتر از 1% u-235 و اندکی پلوتونیوم) می‌تواند به صورت عناصر سوخت جدید بازیابی شود، که 30% اورانیوم طبیعی را که در غیر این صورت لازم بود ذخیره می کند. این اورانیوم و پلوتونیوم به سوخت اکسید مختلط تبدیل می شوند و یک منبع مهم هستند. سپس پسماندهای سطح بالای باقی مانده برای دفع‌شدن به صورت مواد جامدفشرده، پایدار و غیرقابل حلی تبدیل می‌شوند که دفعشان از مجموعه های حجیم سوخت مصرف شده آسان تر است.

P2 یک راکتور آب سبک 1000Mwe در حدود 25 تن سوخت مصرف شده در سال تولید می کند، تا به حال، پیش از 80000 تن از سوخت مصرف شده‌ی راکتورهای تولید برق تجاری بازفرآوری شده است و هم اکنون ظرفیت سالانه این کار حدود 5000 تن در سال است.

P3 مجموعه های سوخت مصرف شده ای که از یک راکتور خارج می شوند به شدت پرتوزا هستند و گرما تولید می کنند. به همین خاطر آنها در تانک‌هایی بزرگ یا حوضچه‌هایی از آب قرار داده، خنک می کنند و سه متر از آب روی آنها پرتوها را مهار می کند. آنها در این جا، که در محل راکتور یا در ایستگاه بازفرآوری است، چند سالی باقی می مانند تا سطح تابش آنها به طور چشمگیری کاسته شود. برای بیشتر انواع سوخت ها بازفرآوری در حدود 50 سال پس از تخلیه راکتور انجام می شود.

P4 سوخت مصرف شده ممکن است پس از خنک سازی اولیه، با استفاده از فلاسک‌های محافظ دار خاصی که تنها چند تن (مثلاً 6 تن) از سوخت مصرف شده را در خود جای داده اما حدود 100 تن وزن دارند، حمل و نقل شود. انتقال سوخت مصرف شده و دیگر پسماندهای سطح بالا به سختی مراقبت می شود.

P5 بازفرآوری سوخت اکسید مصرف شده مستلزم حل عناصر سوخت در اسید نیتریک است. سپس جداسازی شیمیایی اورانیوم و پلوتونیوم انجام می شود. Pu و u می توانند به ورودی چرخه سوخت بازگردانده شوند. (اورانیوم به مرحله تبدیل، پیش از غنی سازی دوباره و پلوتونیوم مستقیماً به مرحله ساخت سوخت). (در حقیقت به منظور بازیابی سوخت آنها اغلب در یک محل واحد هستند). مایع باقی مانده پس از بیرون کشیدن pu و u، پسماند سطح بالاست که شامل حدود 3% از سوخت مصرف شده است. این پسماند به شدت پرتوزاست و به تولید گرمای شدید ادامه می دهد.

P6 بازفرآوری‌های زیادی از دهه 1940، انجام شده است که عمدتاً برای مقاصد نظامی و به منظور بازیافت پلوتونیوم (از سوخت با سوزش burn up کم) برای جنگ افزارها، انجام شده است. در بریتانیا، حدود چهل سال است که عناصر سوخت فلزی حاصل از اولین نسل راکتورهای تجاری که با گاز خنک می شوند، در Sellafield بازفرآوری‌ می گردد. این کارخانه‌ی t/yr1500 با توجه به همراهی با رشد ایمنی، بهداشت و دیگر استانداردهای سامان دهی، با موفقیت توسعه داده شده است. از 1969 تا 1973 سوخت های اکسیدی هم در قسمتی از این کارخانه که به این منظور تغییر داده شده بازفرآوری‌ شدند. در 1994 یک کارخانه جدید بازفرآوری‌ اکسید حرارتی t /yr1200 ‏ (T HORP) برپا شد.

در آمریکا یک داستان حماشی (Saga) سیاسی و فنی هست و هیچ کارخانه بازفرآوری‌ در حال حاضر کار نمی کند. سه کارخانه برای بازفرآوری‌ سوخت های اکسیدی غیرنظامی در آمریکا ساخته شده است: اول یک کارخانه t/yr300 در
West Valley، Ny، ساخته شد و از 72-1966 با موفقیتکار کرد. با وجود این الزامات انتظامی روز به روز سخت گیرانه تر به معنای اصلاح کردن کارخانه بود که غیر اقتصادی پنداشته شد، و کارخانه تعطیل شد. دومی یک کارخانه t/yr300 بود که با استفاده از فن آوری جدید در Morris، illinois ساخته شد، که علی رقم تحقق در مقیاس آزمایشی در کارخانه تولیدی درست کار نکرد. سومی یک کارخانه t/yr1500 در Barnwell، South Carolona بود، که به واسطه تغییر سیاست دولت که طی یک بند از سیاست عدم تکثر آمریکا (non-proliferation) شده بازفرآوری‌ های غیر نظامی را نفی می کرد، بی نتیجه ماند. در مجموع امریکا از دهه 1940 بیش از 250 کارخانه سال تجربه عملی بازفرآوری‌ دارد، که قسمت  عمده آن در کارخانه های صنایع دفاعی بوده است.

P7 در فرانسه یک کارخانه بازفرآوری t/yr 400 مشغول به کار است که برای سوخت‌های فلزی حاصل از راکتورهای اولیه‌ی خنک شونده با گاز در Marcoule می‌باشند. در Lattague، بازفرآوری‌ سوخت های اکسیدی از 1976 انجام می شده است، و دو کاخانه t/yr800 هم اکنون فعالند. هند یک کارخانه سوخت اکسیدی t/yr100 فعال در Tarapur و چند تای دیگر در Kalpakkam و Trombay دارد، و ژاپن در حال سوختن یک کارخانه بزرگ در Rokkasho است در حالی که در این فاصله بیشتر سوخت مصرف شده اش در اروپا بازفرآوری‌ می شود. روسیه یک کارخانه بازفرآوری‌ سوخت اکسیدی t/yr400 در Chelyabinsk دارد و یک کارخانه بزرگتری در Krasnoyarsk می سازد.

P8 پس از بازفرآوری‌، اورانیوم بازیافت شده می تواند در یک کارخانه ساخت سوخت معمولی (پس از غنی سازی دوباره) استفاده شود، اما پلوتونیوم باید در یک کارخانه سوخت اکسید مختلط (MOX) ویژه، که اغلب با کارخانه بازفرآوریی که آن را جدا کرده است در یک جا جمع اند، تبدیل شود. در فرانسه خروجی بازفرآوری‌ با ورودی کارخانه MOX هماهنگ می شود تا از انباشته شدن پلوتونیوم جلوگیری شود. اگر پلوتونیوم برای چند سال انبار شود، آمرسیم- 241، ایزوتوپ مورد استفاده در آشکارسازهای دود خانگی، جمع خواهد شد و به خاطر افزایش سطح پرتوزایی گاما دستکاری کردنش در یک کارخانه MOX مشکل می شود.


 پسماندهای سطح بالای مربوط به بازفرآوری‌

P1 پسماندهای سطح بالای حاصل از بازفرآوری‌ علی رقم مقدار کمشان (5-1 را ببینید) نیازمند مدیریت، ذخیره سازی و دفع بسیار بسیار دقیقی هستند زیرا محتوی پاره‌های شکافت و عناصر ترا اورانیومی می باشند که سطوح بالایی از آلفا، بتا و پرتو گاما و نیز مقدار زیادی گرما منتشر می کنند. این گرما عمدتاً از پاره ای شکافت که اکثراً نیمه عمرهای کوتاه‌تری دارند ناشی می شود. اینها موادی هستند که از نظر عامه به عنوان “پسماندهای هسته‌ای” دانسته می شود.

P2 براساس ظرفیت برق هسته ای ساخته شده از قرار یک کیلووات برای هر نفر، هر یک از افراد یک جامعه غربی[4] سالانه مسئولیت حدود ml20 از پسماند سطح بالایی حاصل از بازفرآوری‌ را متحمل می شود. در صورت جامد سازی حجم این مقدار به حدود یک سانتی متر مکعب کاهش می یابد.

P3 نکته مهمی که وجود دارد این است که پسماندهای حاصل از برنامه های تسلیحاتی در کشورهایی مانند آمریکا و روسیه بدون توجه به سرعت گسترش توان هسته‌ای تجاری، برای چند دهه بر این صحنه حاکم خواهد بود. میرات اینها در مناطق آلوده، از دهه 1940 به بعد، مخازن ذخیره سازی دارای نشتی و دور نمایی از هزینه‌های پاک سازی بسیار زیادی است که برای کشورهای تولید کننده آنها باقی می‌ماند.

P4 پسماندهای مایع تولید شده در کارخانه های بازفرآوری‌ در مخازن فولادی ضد زنگ چند لایه ای که خنک شده و توسط بتون مسلح احاطه می شوند، به صورت موقتی انبار می شوند. اینها باید پیش از طرح مسئله دفع دائلی شان به مواد جامد فشرده و خنثی از نظر شیمیایی تبدیل شوند.

P5 روش اصلی جامد کردن پسماندهای مایع، شیشه ای کردن است. Synroc (الماس مصنوعی Synthetic rock) استرالیایی یک روش کارآمد برای بی حرکت کردن این چنین پسماندهائی است، اما هنوز برای پسماندهای غیر نظامی، به شکل تجاری گسترش نیافته است.

متن کامل را می توانید بعد از پرداخت آنلاین ، آنی دانلود نمائید، چون فقط تکه هایی از متن به صورت نمونه در این صفحه درج شده است.

/images/spilit.png

دانلود فایل 


دانلود با لینک مستقیم


دانلود تحقیق کامل درمورد سوخت هسته ای و فرآیند آن

دانلود مقاله کامل درباره مخازن CNG و آزمون آنها (استفاده از سوخت گاز طبیعی)

اختصاصی از فایلکو دانلود مقاله کامل درباره مخازن CNG و آزمون آنها (استفاده از سوخت گاز طبیعی) دانلود با لینک مستقیم و پر سرعت .

دانلود مقاله کامل درباره مخازن CNG و آزمون آنها (استفاده از سوخت گاز طبیعی)


دانلود مقاله کامل درباره مخازن CNG و آزمون آنها (استفاده از سوخت گاز طبیعی)

 

 

 

 

 

 

لینک پرداخت و دانلود *پایین مطلب*

فرمت فایل: Word (قابل ویرایش و آماده پرینت)

تعداد صفحه :31

 

بخشی از متن مقاله

مقدمه

با توجه به مشکلات روزافزون آلودگی هوا و عواقب زیست محیطی آن به دلیل استفاده از سوخت های دودزا (گازوئیل و بنزین و …) که حجم عمده ای از این آلودگی توسط وسایل نقلیه شخصی یا عمومی تولید می گردد، استفاده از سوخت گاز طبیعی به دلیل تولید حداقل گازهای آلوده کننده، درصد اولویت های دولت ها جهت جایگزین نمودن این سوخت بار دیگر سوخت های موجود در وسایل نقلیه قرار دارد.

از مزایای عمده سوخت گاز طبیعی نسبت به سوخت بنزینی می‌توان به موارد زیر اشاره نمود:

گاز طبیعی در مجموع دارای آلودگی کمتری نسبت به سوخت های فسیلی بوده و از لحاظ شرایط عملکردی موتور وضعیت بهتری از بنزین دارند، چراکه نسبت تراکم مناسب برای موتورهای با سوخت گاز طبیعی14:1 است، در حالی که عدد اکتان بنزین 90 می‌باشد و سبب افزایش راندمان و کارآیی موتورهای گازی مضر می‌گردد.

چنانچه موتور برای شرایط گاز سوز طراحی شود، قدرت بیشتری از موتورهای بنزینی دارند. راندمان سوخت گاز حدود 15% بیشتر از بنزین است و همچنین ارزش حرارتی آن نیز حدود 13% بیشتر از سوخت بنزین است. قیمت گاز طبیعی در مقایسه با بنزین برای انرژی سوخت یکسان حدود یک سوم بنزین معادل می‌باشد. گاز طبیعی آلودگی منواکسیدکربن را تا 90%، اکسید نیتروژن را حدود 30% و هیدروکربن ها را تا 50% کاهش داده و تقریباً عاری از مواد سرطان زا می باشند. این مزیت ها مهمتریت عواملی هستند که مشوق انتخاب گاز طبیعی به عنوان سوخت خودرو است ولی به این نکته کمتر توجه می‌شود که آمار ایمنی خودروهای گازسوز (NGV) نسبت به تقریباً همه سوختهای متداول یا جایگزین امروز، مطلوب ترین وضعیت را دارد. بطوریکه گاز طبیعی را به صورت سوختی با ایمنی برابر یا حتی ایمنی تر از سایر سوختهای نفتی معرفی می‌کند.

دلایل این ایمنی بیشتر عبارتند از:

  • ¨ گاز طبیعی دارای دانسیته حدود 6/0 نسبت به هوا است در نتیه به محض نشت‌کردن، سریعاً در هوا پخش می‌گردد و تجمع نمی یابد.
  • ¨ گاز طبیعی در یک دامنه بسیار محدود (نسبت گاز به هوای 4 تا 15 درصد ) محترق می‌گردد، درغیر اینصورت صورت احترافی رخ نمی دهد.
  • ¨ از سویی لزومی ندارد صاحب جایگاه با خطر نشت از مخزن زیرزمینی است و پنجه نرم کند در حالیکه این یک نکته قابل ملاحظه و مهم در مورد سوختهای مایع است.

بنابراین درخصوص خودرو گاز طبیعی سوز نکته ایمنی مهم متوجه مخزن و متعلقات آن است و آن هم بیشتر به سبب فشار کاری بالایی است که با آن کار می‌گردد.

این مقاله سعی دارد به معرفی اجمالی مخازن CNG و ازمونهای مرتبط با آنها بپردازند، استانداردهای مربوط به آنها را بیان کند و مختصری به تکنولوژی ساخت آنها اشاره داشته باشد.

سعی شده اس مطالب تا حد امکان مختصر، اما مفید و منسجم باشند تا خواننده در فرصتی کوتاه بتواند اطلاعات قابل توجه و مفیدی راجع به مخازن تحت فشار در خودروهای گازسوز بدست آورد.


بخش اول انواع مخازن CNG

مخازن CNG برحسب ساختار می توانند بر چهار نوع باشند:

مخازن نوع اول ـ مخازن تمام فلزی (CNG-1)

این مخازن از جنس فولاد یا آلومینیوم هستند و شرایط ترکیب شیمیائی آنها در استاندارد مربوطه ذکر گردیده است.

مخازن نوع دوم ـ مخازن کمرپیچ (CNG-2)

این نوع مخازن دارای یک لایه داخلی (Liner) از جنس فولاد یا آلومینیوم بدون دز است و قسمت استوانه ای این لایه داخلی توسط الیاف شیشه، آرامید، یا مخلوطی از آنها که آغشته به رزین است پیچیده شده و این ساختار کامپوزیتی که به مخزن داده شده این امکان را بوجود می آورد که بتوان از ضخامت قسمت فلزی کاست و در نتیجه مخزن سبکتری را بدست آورد.

رزینی که در ساختار مخزن کامپوزیتی استفاده می‌شود می تواند از نوع گرما نرم (Thermoplastic) یا گرما سخت (Thermo-setting) باشند.

مخازن نوع سوم ـ مخازن تمام پیچ (CNG-3)

این نوع مخازن دارای یک لایة داخلی از جنس فولاد یا آلومینیوم بدون درز است و تمام این لایه داخلی توسط الیاف شیشه، آرامید، کربن یا مخلوطی از آنها که آغشته به رزین است پیچیده است و این ساختار کامپوزیتی که به مخزن داده شده این امکان را بوجود می آورد که بتوان از ضخامت قسمت فلزی کاست و در نتیجه مخزن سبک تری را نسبت به دو نوع اول بدست آورد.

مخازن نوع چهارم ـ مخازن تمام کامپوزیت (CNG-4)

این نوع مخازن دارای یک لایه داخلی (Liner) از جنس پلیمر بدون درز است. و تمام این لایه داخلی توسط الیاف شیشه، آرامید، کربن یا مخلوطی از آنها که آغشته به رزین است. پیچیده شده و این ساختار تمام کامپوزیت یکی از سبکترین انواع را در مخازن CNG تأمین می نماید. در ساخت این نوع مخازن از تکنولوژی بالایی استفاده شده است و تعداد سازندگاانی که از این نوع مخازن تولید می کنند، بسیار معدود است و قیمت آنها نیز بالاتر از سایر انواع می باشند.

استفاده از مخازن CNG در جهان

خودروهای گازسوز طبیعی بیش از پنجاه سال است که در جهان مورد استفاده قرار می گیرند. استفاده از این خودروها از سال 1970 به دلیل مزایای زیست محیطی و اقتصادی روبه افزایش و به خصوص استفاده از کامپوزیت ها از سال 1980 توسعه یافته است. در حال حاضر بیش از دو میلیون خودرو در جهان برای استفاده از CNG ساخته و یا تبدیل شده اند.

این خودروها و مخازن آنها سابقة عمومی عالی از خودشان داده اند در حالیکه مخزن فولادی در دنیا متداول ترند، بازار آمریکای شمالی توسط مخازن کامپوزیت اشغال شده‌اند. بسیاری از کارخانه های سازنده مخازن CNG  دارای سابقه طولانی تولید تسلیحات بوده اند و بعداً به تولید این مخزن روی آورده اند.


بخش دوم آزمونهای مخازن

به منظور اطمینان از ساخت صحیح و مطابق با استاندارد مخازن CNG ، آنها را تحت آزمونها و شرایط مختلفی قرار می دهند. یک مخزن وقتی مورد تأیید قرار می‌گیرد و گواهی استاندارد مربوطه را دریافت می‌کند که آزمونهای آن استاندارد را با موفقیت پشت سر بگذارد.

تعداد این آزمونها بسته به نوع مخزن متفاوت است. در مورد مخازن کامپوزیت (بخصوص نوع چهارم) آزمونها مفصل و سختگیرانه تر است و چون آزمونهای خاص مرتبط با مواد پلیمری را هم شامل می شود، تعداد آزمونها بیشتر است.

این آزمونها را می‌توان براساس هدف آنها در سه نوع رده بندی نمود. هریک از آزمونها در یکی از این سه رده قرار می گیرند:

  1. آزمونهای تحمل آسیب
  2. آزمونهای محیطی
  3. آزمونهای چرخة عمر

در این‌جا به اختصار به شرح این آزمونها می پردازیم:

1. آزمونهای تحمل آسیب آزمون نفوذ گلوله

پس از این آزمون مخزن نباید به ذرات خرد تقسیم شود. استفاده از الیاف شیشه و کربن تحمل این آسیب را افزایش می‌دهد. هرچه ضخامت دیوارة کامپوزیت افزایش یابد، که این معمولاً با افزایش قطر و فشار همراه است، مقاومت آن در برابر تأثیر آسیب افزایش می یابد. در این آزمون مخزن با یک گلوله جنگی به قطر 62/7 میلی متر طوری مورد اصابت قرار می‌گیرد که حداقل یک سمت آزمون سوراخ شود. مخزن باید تا فشار 200 برابر پر شده باشد.

آزمون سقوط

در این آزمون یک یا چند مخزن تکمیل شده بدون اعمال فشار داخلی و شیر،‌ در دمای محیط تحت آزمون قرار می گیرند. یک مخزن بصورت افقی از فاصله 8/1 متری از سطح زمین انداخته می‌شود. یک مخزن بصورت عمودی به صورت انداخته می‌شود که انرژی پتانسیل آن 488 ژول باشد، ولی در هیچ حالتی ارتفاع عدسی پایینی مخزن نباید از 8/1 متر بیشتر باشد.

یک مخزن نیز باید تحت زاویة 45 درجه از ارتفاعی روی عدسی انداخته شود که فاصله مرکز گرازش آن از زمین 8/1 متر باشد.

پس از این آزمون مخزن در 3000 چرخه در دمای محیط تحت چرخة فشار بین 20 الی 260 بار قرار گرفته و سپس تحت 12000 چرخة دیگر قرار می‌گیرد. مخزن در 300 چرخة اول نباید دچار نشت یا گسیختگی شود، ولی در 12000 چرخة بعدی می تواند دچار نشت شود.

نکتة مهمی که در مورد این آزمون وجود دارد این است که وقتی مخازن تحت فشار هستند در مقابل آسیب های ناشی از سقوط مقاومترند، چراکه فشار داخلی از فرورفتگیهایی که می تواند در دیواره ایجاد آسیب نماید تا حدودی جلوگیری می نماید؛ به همین دلیل مخازن بدون اعمال فشار تحت آزمایش قرار می گیرند.

متن کامل را می توانید بعد از پرداخت آنلاین ، آنی دانلود نمائید، چون فقط تکه هایی از متن به صورت نمونه در این صفحه درج شده است.

/images/spilit.png

دانلود فایل 


دانلود با لینک مستقیم


دانلود مقاله کامل درباره مخازن CNG و آزمون آنها (استفاده از سوخت گاز طبیعی)

سوخت هسته ای و فرآیند آن

اختصاصی از فایلکو سوخت هسته ای و فرآیند آن دانلود با لینک مستقیم و پر سرعت .

سوخت هسته ای و فرآیند آن


سوخت هسته ای و فرآیند آن

فرمت وُرد

63 صفحه

 

عنوان :

 

 

سوخت هسته ای

و فرایند آن

 

 

 

 

 

 

 

پایان چرخه سوخت هسته ای

 


پسماندهای هسته‌ای

]علی رغم سابقه به وضوح ایمن در طول نیم قرن گذشته، امروزه یکی از بحث برانگیزترین جنبه های چرخه سوخت هسته ای مسئله مدیریت و دفع پسماندهای پرتوز است[.

P1 مشکل ترین مسئله، پسماندهای سطح بالا هستند، و دو سیاست مختلف برای مدیریت آنها وجود دارد:

  • بازفرآوری سوخت مصرف شده برای جدا کردن آنها (که با شیشه ای کردن و دفع کردن آنها ادامه می یابد) یا
  • دفع مستقیم سوخت مصرف شده دارای پرتوزایی سطح بالا به صورت پسماند.

]پسماندهای هسته ای اصلی در سوخت راکتور سفالی محفوظ باقی می مانند[.

P2 همانطور که در فصل‌های 3و4 به طور خلاصه گفته شد، “سوزاندن” سوخت در قلب راکتور محصولات شکافتی تولید می کند به مانند ایزوتوپ های مختلف باریم، استرونسیم، نریم، ید، کریپتون و گرنون (Ba، Sr، Cs، I، Kr، Xe). بیشترین ایزوتوپ‌های شکل گرفته به صورت محصولات شکافت در سوخت به شدت پرتوزا هستند و متعاقباً عمرشان کوتاه است.

P3 علاوه بر این اتم های کوچکتر به وجود آمده از شکافت سوخت، ایزوتوپ‌های ترااورانومی مختلفی هم با جذب نوترون تشکیل می شوند. از جمله اینها پلوتونیوم- 239، پلوتونیوم- 240 و پلوتونیوم- 241[1]، به علاوه محصولات دیگری هستند که از جذب نوترون توسط u-2381 در قلب راکتور و سپس تلاشی بتا به عمل می آیند. همه اینها پرتوزا هستند و به غیر از پلوتونیوم شکافت پذیر که “می‌سوزد”، در سوخت مصرف شده ای که از راکتور برداشته می شود باقی می مانند. ایزوتوپ های ترا اورانیوم و دیگر اکتنیدها[2] بیشترین قسمت از پسماندهای سطح بالای با طول عمر زیاد را شکل می دهند.

P4 در حالی که چرخه سوخت هسته ای صلح آمیز، پسماندهای مختلفی تولید می‌کند، این پسماندها “آلودگی” به شمار نمی آیند، زیرا در عمل همه آنها نگهداری و مدیریت می شوند، در غیر این صورت است که خطرناک خواهند بود. در حقیقت توان هسته ای تنها صنعت تولید انرژی است که مسئولیت کامل همه پسماندهایش را برعهده گرفته و هزینه آن را به طور کامل بر قیمت تولیداتش اضافه می کند. وانگهی هم اکنون مهارت های به دست آمده در مدیریت پسماندهای غیر نظامی در حال شروع به اعمال شدن به پسماندهای نظامی است که یک مشکل محیط زیستی جدی در چند نقطه جهان ایجاد کرده است.

]پسماندهای پرتوزا مواد گوناگونی را شامل می شوند که از جهت محافظت مردم و محیط زیست اقدامات متفاوتی را طلب می کنند. مدیریت و دفع آنها از نظر فن آوری سر راست است[.

P5 این پسماندها براساس مقدار و نوع پرتوزایی موجود در آنها معمولاً به سه دسته تحت عنوان های پسماندهای سطح پایین سطح متوسط و سطح بالا دسته بندی می‌شوند.

P6 عامل دیگر در مدیریت پسماندها مدت زمانی است که آنها ممکن است خطرناک باقی بمانند. این زمان به نوع ایزوتوپ های پرتوزای موجود در آنها و به خصوص مشخصه نیمه عمر هر یک از این ایزوتوپ ها بستگی دارد. نیمه عمر مدت زمانی است که طی می شود تا یک ایزوتوپ پرتوزا نیمی از پرتوزائیش را از دست بدهد. پس از چهار نیمه عمر سطح پرتوزایی به  مقدار اولیه آن و پس از هشت نیمه عمر به  آن می رسد.

P7 ایزوتوپ های پرتوزای مختلف نیمه عمرهایی دارند که از کسری از ثانیه تا دقیقه‌ها، ساعات یا روزها، حتی تا میلیون ها سال گسترده شده اند. پرتوزایی با گذشت زمان، همانطور که این ایزوتوپ ها به ایزوتوپ های پایدار غیر پرتوزا تلاش می کنند کم می شود.

P8 آهنگ تلاشی یک ایزوتوپ با عکس نیمه عمرش متناسب است. یک نیمه عمر کوتاه به معنای تلاشی سریع است. بنابراین، برای هر نوع پرتوزایی، شدت پرتوزایی بالاتر در یک مقدار ماده داده شده مستلزم کوتاه‌تر بودن نیمه عمر است.

P9 سه اصل کلی برای مدیریت پسماندهای پرتوزا بکار گرفته می شود:

  • تغلیظ و نگهداری concentrate-and-cantain
  • تضعیف و پراکنش dilute- and disparoe
  • تأخیر و تلاش delay-and-decay

P10 دو تای اول در مورد مدیریت پسماندهای غیر پرتوزا هم به کار می روند. پسماندها یا تغلیظ شده و سپس متروی می شوند، یا (برای مقادیر خیلی کم) تا سطح قابل قبولی تضعیف شده و سپس به محیط زیست باز گردانده می شوند. با این وجود تأخیر و تلاشی منحصر به مدیریت پسماندهای پرتوزاست و به این معنی است که پسماند ذخیره و اجازه داده می شود که پرتوزایی آن از طریق تلاشی طبیعی ایزوتوپ‌های موجود در آن کم شود.

]در چرخه سوخت هسته ای غیرنظامی توجگه اصلی بر پسماندهای سطح بالاست که حاوی محصولات شکافت و عناصر ترا اورانیومی تشکیل شده در قلب راکتور هستند[.


P11 پسماند سطح بالا: ممکن است خود سوخت مصرف شده یا پسماند اصلی حاصل از باز پردازش آن باشد. در هر دو حال این حجم متوسطی دارد- در حدود 30-25 تن سوخت مصرف شده یا سه مترمکعب پسماند شیشه ای شده در سال برای یک نمونه راکتور هسته ای بزرگ (1000 MWC، نوع آب سبک). این حجم می تواند به صورت موثر و اقتصادی ایزوله شود. سطح پرتوزایی آن به سرعت کم می شود. به عنوان نمونه، یک مجموعه سوخت راکتور آب سبک تازه تخلیه شده آن قدر پرتوزایی دارد که چند صد کیلو وات گرما می پراکند، اما پس از یک سال این مقدار به 5kw و پس از پنج سال به یک کیلووات می رسد. ظرف مدت 40 سال پرتوزایی آن به حدود یک هزارم مقدار آن هنگام تخلیه می رسد.

P12 اگر سوخت مصرف شده بازفرآوری شود، %3 آن که به صورت پسماند سطح بالا ظاهر می شود، عمدتاً مایع است و حاوی “خاکستر” اورانیوم سوخته شده است. این پسماند که شامل محصولات شکافت به شدت پرتوزا و چند عنصر سنگین با پرتوزایی دراز مدت است، مقدار قابل توجهی گرما تولید می کند و باید خنک شود. این به صورت شیشه بورو سیلیکات[3] (شبیه به پیرکتن) و به منظور پوشینه‌داری، ذخیره سازی میان مدت، و دفع نهایی در اعماق زمین شیشه ای می شود. این سیاستی است که توسط بریتانیا، فرانسه، آلمان، ژاپن، چین و هند اتخاذ می شود. (بخش های 5-2 و 5-3 را ببینید)

P13 از طرف دیگر، اگر سوخت مصرف شده راکتور باز پردازش نشود، همه ایزوتوپ های با پرتوزایی بالا و اکتنیدهای دراز عمر در آن باقی می‌مانند، و در این صورت همه مجموعه های سوخت به شکل پسماند سطح بالا رفتار می کنند. گزینه دفع مستقیم توسط امریکا، کانادا و سوئد دنبال می شود، بخش 5-4 را بینید.

P14 تعدادی از کشورها انتخابی بین بازپردازی و دفع مستقیم را گردن نهاده اند.

P15 پسماندهای سطح بالا تنها %3 حجم کل پسماندهای پرتوزای جهان را تشکیل می‌دهند، اما 95% کل پرتوزایی از آنهاست.

P16 علاوه بر پسماندهای سطح بالای حاصل از تولید توان هسته‌ای، هرگونه استفاده از مواد پرتوزا در بیمارستان ها، آزمایشگاه ها و صنایع آنچه را که (پسماندهای سطح- پایین) نامیده می شود، تولید می کند. رسیدگی کردن اینها خطرناک نیست اما باید با دقتی بیش از زباله‌های معمولی دفع شوند. پسماندهای هسته ای از بیمارستان‌ها. دانشگاهها و صنایع به علاوه صنایع توان هسته ای می آیند، آنها می توانند خاکستر شوند و معمولاً دست آخر در محل های دفن زباله کم عمقی چال می شوند. نشان داده شده است که این روش موثری برای مدیریت پسماند این چنین مواد نسبتاً بی‌خطری است به شرطی که همه مواد بسیار سمی ابتدا جدا شده و جزء پسماندهای سطح بالا قرار گیرد.


[1] - pa-241 است که تلاشی کرده و امرسیم- 241 را که در آشکارسازهای دود خانگی به کار می رود، برای ما ایجاد می کند.

[2] - اکتنیدها عناصری هستند با عدد اتمی 89 (اکتینیم) یا بالاتر و ترا اورانیوم ها بالاتر از 92 (اورانیوم)

[3] - مترجم 1: نوعی شیشه که پنج درصد آن اسید بوریک است و در مقابل گرمای زیاد مقاوم می باشد.


دانلود با لینک مستقیم


سوخت هسته ای و فرآیند آن

دانلود مقاله پیرامون سیستم سوخت رسانی انژکتوری بنزینی(فرمت word و باقابلیت ویرایش)تعداد صفحات 11

اختصاصی از فایلکو دانلود مقاله پیرامون سیستم سوخت رسانی انژکتوری بنزینی(فرمت word و باقابلیت ویرایش)تعداد صفحات 11 دانلود با لینک مستقیم و پر سرعت .

دانلود مقاله پیرامون سیستم سوخت رسانی انژکتوری بنزینی(فرمت word و باقابلیت ویرایش)تعداد صفحات 11


دانلود مقاله پیرامون سیستم سوخت رسانی انژکتوری بنزینی(فرمت word و باقابلیت ویرایش)تعداد صفحات 11

دانلود مقاله پیرامون سیستم سوخت رسانی انژکتوری بنزینی(فرمت word و باقابلیت ویرایش)تعداد صفحات 11

عنوان مقاله : سیستم سوخت رسانی انژکتوری بنزینی

قالب بندی : Word

قیمت : 3500 تومان

شرح مختصر : می توان گفت که موتور کاربراتوری به نمونه انژکتوری برتری و ارجعیت دارد. ولی عدم استفاده از کاربوراتور و انتخاب انژکتور توسط آلمانی ها به این دلیل بود که استفاده از کاربوراتور در هواپیما در مناطق نامناسب تمایل زیاد به تولید یخ دارد و همچنین امتیاز دیگر انواع انژکتوری تاثیر ناپذیر بودن عملکرد آن در حین انجام مانورهای جنگی خطرناک بود. تبدیل یک سیستم انژکسیون دیزل به سیستمی که بنزین استفاده کند کاری بس مشکل است چون سوخت گازوییل که یک روغن سبک وزن می باشد باعث می شود که نوعی روغنکاری بین پمپ ها و سیلندرهای سیستم انژکتوری انجام شود. در مقابل، بنزین سوختی بی نهایت خشک است و به طور کلی فاقد هر گونه قابلیت روغنکاری می باشد. بنابراین در تبدیل از گازوییل به بنزین نیاز به یک تحقیق بسیار دقیق در زمینه فلزهای مورد استفاده در ساختمان پیستون ها و سیلندرها دارد که نتیجه چنین عملی گران شدن هزینه ساخت می باشد. تزریق سوخت بنزین در موتورهای جرقه ای بیشتر در مانیفولد هوا یا روی سوپاپ ورودی و بندرت در داخل سیلند انجام می شود. این مقاله به بررسی سیستم های تزریق سوخت بنزین در موتورهای جرقه ای پرداخته است که از دیرباز مورد توجه سازندگان خودرو بوده است و در این راستا فعالیتهای زیادی انجام شده است که منجر به تولید انواع سیستمهای سوخت رسانی بنزینی انژکتوری Jetronic شده است.

فهرست مطالب این مقاله :

سیستم هیل بورن

سیستم روچستر

واحد اندازه گیر هوا

شرح کامل سیستم K-Jetronic

قسمت کنترل سوخت ارسالی به انژکتورها

انژکتورها

اجزاء تشکیل دهنده سیستم K-Jetronic

سیستم سوخت رسانی KE-Jetronic

اجزاء سیستم KE-Jetronic

سوپاپ استارت سرد Bosch در سیستم K و KE-Jetronic

دستگاه اندازه گیر هوا

طریقه پاشش انژکتورها در سیستم L-Jetronic

حسگر فشار سنج هوا

دستگاه اندازه گیر دبی هوا

واحد انژکتور


دانلود با لینک مستقیم


دانلود مقاله پیرامون سیستم سوخت رسانی انژکتوری بنزینی(فرمت word و باقابلیت ویرایش)تعداد صفحات 11