فایلکو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

فایلکو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

پاورپوینت الکترودهای فعال

اختصاصی از فایلکو پاورپوینت الکترودهای فعال دانلود با لینک مستقیم و پر سرعت .

پاورپوینت الکترودهای فعال


پاورپوینت الکترودهای فعال

 

دسته بندی : پاورپوینت 

نوع فایل:  ppt _ pptx

( قابلیت ویرایش )

 


 قسمتی از محتوی متن پاورپوینت : 

 

تعداد اسلاید : 32 صفحه

Active Electrodes الکترودهای فعال به نام خدا فهرست مطالب مشکلات الکترودهای استاندارد الکترودهای فعال کاهش نویز ناشی از برق شهر اندازه گیری مشخصات الکترودهای فعال مزایا معایب بهبود عملکرد الکترودهای فعال سه شکل عمده درالکترودهای EEG رایج با استفاده ازچسب وجود دارد 1-چسب باعث تحریک وحساسیت پوست می‌شود وقبل ازآن باید پوست ساییده شود.
2-تداخلهای الکتریکی وآرتیفکتهای حرکتی که توسط لیدها دریافت می‌شوند ممکن است اعوجاجات نامطلوبی را دربرداشته باشد.
خصوصاً زمانی که سیگنالها کوچک هستند.
مثل EEG وپتانسیلهای evoke . 3- زمان زیادی صرف قراردادن الکترودها وپاک‌کردن پوست والکترود بعد ازانجام ثبت می‌شود.
این مشکلها را می‌توان با استفاده ازالکترودهای فعال تا حد زیادی کاهش داد تلاشهای اولیه برای کم‌کردن این مشکلات منجر به طراحی الکترودهای خازنی، الکترودهای خشک والکترودهای فعال شد.
یک گروه تحقیقاتی دردانشگاه Case Western Reserve این مشکلات را درسالهای 1971 تا1975 مورد بررسی قراردارند وراه‌حلی را به صورت قراردادن یک تقویت‌ کننده درداخل الکترود ارائه کردند.
این الکترودها درهمان سالها با نتایج خوبی به صورت کلینیکی مورد ارزشیابی قرار گرفتند.
با این وجود، قیمت آنها بالا بود وازپایداری مناسبی برای ثبت EEG برخوردار نبودند.
پیشرفتهای جدید درزمینة الکترونیک وتکنولوژیهای مدارهای مجتمع، باتریها، ومواد بسته‌بندی، امکان طراحی سری جدیدی ازالکترودهای فعال را با قیمتی معقول فراهم کرد.
الکترودهای فعال یک مطالعه درمورد الکترودهای فعال اولیه مثل الکترود EEG نشان داد که با وجود این که آنها بخوبی درEKG وEEG کارمی‌کنند، ولی درتستهای کلینیکی واقعی رد می‌شوند.
مسائلی که درهنگام تست مشاهده می‌شوند: اشباع گهگاه تقویت کننده تداخل امواج 60Hz نویز بالا آرتیفکتهای حرکتی بالا تقویت کننده با تغییرپتانسیل الکترود پوست یا جریان نشتی ورودی به اشباع می‌رفت .
بررسیها نشان داد که این الکترودها امپدانس ورودی کم، جریان بایاس بسیار زیاد وجریان نشتی درحد نانوآمپردارند.
Comercial Electrode Metalic Box Coaxial Cable جریان آفست ورودی وپتانسیل پلاریزاسیون به شدت تابع جریانی هستند که درواسطة بین الکترود-پوست جاری است.
ازنقطه نظرعملی، تغییرات پتانسیل کلی درورودی الکترود ناشی ازتغییرات مقاومت پوست وتغییرات ولتاژ پلاریزاسیون, باید به مراتب کمتر ویا حداقل هم دامنه با سیگنال بیولوژیکی باشد.
دراین صورت تقویت کننده موجود دروسیله همیشه درناحیه فعال خودباقی می‌ماند وبه نواحی قطع واشباع نمی‌رود.
جریان ورودی به الکترود، Iin ، که ازمقاومت پوست، Rs می‌گذرد، ولتاژ آفست Vos را ایجاد می‌کند.
با تغییرات ناشی ازاتصالات پوست الکترود, Rs، ولتاژ آفست درمحدودة بزرگی نوسان می‌کند.
که این مورد می‌تواند باعث اشباع تقویت کننده شود وبه زمان زیادی برای بازگشت به حالت فعال نیاز دارد (بسته به مقدار فرکانس قطع پایین) .
علاوه براین ولتاژ پلاریزاسیون درواسطة الکترود-پوست نیز، که در زمانی ایجاد می‌شود که موقعیت الکترود نسبت به پوست جابجا گردد، به شدت به جریان عبوری ازآن وابسته است.
اگرجریان وردی خیلی

  متن بالا فقط قسمتی از محتوی متن پاورپوینت میباشد،شما بعد از پرداخت آنلاین ، فایل را فورا دانلود نمایید 

 


  لطفا به نکات زیر در هنگام خرید دانلود پاورپوینت:  ................... توجه فرمایید !

  • در این مطلب، متن اسلاید های اولیه قرار داده شده است.
  • به علت اینکه امکان درج تصاویر استفاده شده در پاورپوینت وجود ندارد،در صورتی که مایل به دریافت  تصاویری از ان قبل از خرید هستید، می توانید با پشتیبانی تماس حاصل فرمایید
  • پس از پرداخت هزینه ،ارسال آنی پاورپوینت خرید شده ، به ادرس ایمیل شما و لینک دانلود فایل برای شما نمایش داده خواهد شد
  • در صورت  مشاهده  بهم ریختگی احتمالی در متون بالا ،دلیل آن کپی کردن این مطالب از داخل اسلاید ها میباشد ودر فایل اصلی این پاورپوینت،به هیچ وجه بهم ریختگی وجود ندارد
  • در صورتی که اسلاید ها داری جدول و یا عکس باشند در متون پاورپوینت قرار نخواهند گرفت.
  • هدف فروشگاه جهت کمک به سیستم آموزشی برای دانشجویان و دانش آموزان میباشد .

 



 « دانلود و پرداخت آنلاین »


دانلود با لینک مستقیم


پاورپوینت الکترودهای فعال

جداسازی همزمان اسید اسکوربیک و استامینوفن با استفاده از الکترودهای خمیر کربن اصلاح شده

اختصاصی از فایلکو جداسازی همزمان اسید اسکوربیک و استامینوفن با استفاده از الکترودهای خمیر کربن اصلاح شده دانلود با لینک مستقیم و پر سرعت .

شامل سه بخش به صورت word می باشد. سه فصل بطور تفکیکی ارائه شده
فصل اول : مقدمه
فصل دوم : تجربی
فصل سوم :نتایج و بحث

مطالعه رفتار الکترودهای خمیر کربن اصلاح شده با کمپلکس‌های CoBrSal،CoClSal  و CoNO2Sal در تعیین مقدار ولتامتری آسکوربیک اسید و استامینوفن انجام گرفته . این رفتارها بصورت تفکیک و همزمان انجام گرفته است . با استفاده از جداول مختلف و روش های مختلف صحت کار مورد تایید می باشد.


دانلود با لینک مستقیم


جداسازی همزمان اسید اسکوربیک و استامینوفن با استفاده از الکترودهای خمیر کربن اصلاح شده

پایان نامه تهیه الکترودهای کربن سرامیکی و کربن شیشه ای اصلاح شده با نانولوله کربن و مولکول های کروسین

اختصاصی از فایلکو پایان نامه تهیه الکترودهای کربن سرامیکی و کربن شیشه ای اصلاح شده با نانولوله کربن و مولکول های کروسین دانلود با لینک مستقیم و پر سرعت .

پایان نامه تهیه الکترودهای کربن سرامیکی و کربن شیشه ای اصلاح شده با نانولوله کربن و مولکول های کروسین


پایان نامه تهیه الکترودهای کربن سرامیکی و  کربن شیشه ای  اصلاح شده با نانولوله کربن و مولکول های کروسین

 

 

 

 

 

 

 


فرمت فایل : WORD (قابل ویرایش)

تعداد صفحات:90

پایان‌نامه کارشناسی ارشد در رشته ی شیمی (تجزیه)

عنوان : تهیه الکترودهای کربن سرامیکی و  کربن شیشه ای اصلاح شده با نانولوله کربن و مولکول های کروسین ، نانو ذرات اکسید روتنیم و مولکول های سلستین بلو و کاربرد آن ها دراندازه گیری ترکیبات بیولوژی و شیمیایی

فهرست مطالب:
فصل اول (مقدمه¬)       1
 1-1-مقدمه............................................................................................................................. 2
1-2- انواع الکترودهای مورد استفاده در شیمی تجزیه............................................................... 3
1-2- 1- الکترودهای جامد...................................................................................................... 3
1-2-2- الکترودهای مایع......................................................................................................... 3
1-2-1-1- الکترودهای فلزی................................................................................................... 3
1-2-1-2- الکترودهای نیمه هادی........................................................................................... 4
1-2-1-3- پلیمرهای هادی..................................................... .................................................4
1-2-1-4- الکترودهای کربنی..................................................................................................6
1-3- الکترودهای اصلاح شده و کاربردآنها در شیمی تجزیه..................................................... 6
1-3-1- اهداف استفاده از الکترودهای اصلاح شده.................................................................. 6
1-3-2- لزوم اصلاح سطوح الکترودی..................................................................................... 6
1-3-3- الکترودهای اصلاح شده شیمیایی................................................................................ 7
1-3-3-1- چگونگی اصلاح سطوح الکترودی......................................................................... 8
1-3-4-دسته بندی الکترودهای اصلاح شده با توجه به کاربرد آنها در روش¬های  مختلف آنالیزی..................................................................................................................................... 9
1-4- شیمی روتنیم................................................................................................................  11
1-4-1کشف   ونامگذاری..................................................................................................... 11
1-4- 2-  خصوصیات فیزیکی.................................................................................................12
1-4-3-خصوصیات شیمیایی.................................................................................................. 12
1-5- شیمی کلریدروتنیم....................................................................................................... 12
1-6-  نانوذرات اکسید روتنیم................................................................................................ 12
1-7- شیمی نانولوله‌های‌کربن................................................................................................. 13
1-8- شیمی کروسین............................................................................................................. 14
1- 9- شیمی تیونین و سلستین................................................................................................. 15
1- 10-  شیمی سل-ژل.......................................................................................................... 16
1-10-1-  الکترود های ساخته شده براساس سل-ژل...............................................................16
1-11-  الکترود های کربن شیشه ای.......................................................................................16
1-12-  فعال سازی سطح الکترود و انواع آن...........................................................................17
1-12-1-   روش قرار دادن اصلاحگر بر سطح الکترود............................................................18
1-12-2-  ساختار اصلاح کننده های سطح..............................................................................18
1-13- اهداف کار پژوهشی حاضر..........................................................................................20

 
فصل دوم (مروری بر کارهای انجام¬شده در زمینه الکترودهای اصلاح¬شده،NADH
و پریدات)                                                                                                                             21
2-1- مروری بر کارهای انجام شده در زمینه اندازه-گیری ترکیبات مختلف بر پایه الکترودهای
اصلاح¬شده با لوله کربن و مولکول های کروسین.....................................................................22
2-2- مروری بر استفاده از نانو ذرات اکسید روتنیم برای اصلاح سطح الکترود.........................22
2-3- مروری بر کارهای انجام گرفته برای تعیین  NADHبه روش الکتروشیمیایی................... 24
2-4- مروری بر کارهای انجام گرفته برای تعیین پریدات با استفاده از الکترودهای اصلاح¬شده..24
فصل سوم (تعیین آمپرومتری نیکوتین آمید آدنین دی نوکلئوتید اسید با الکترود کربن سرامیک اصلاح شده با نانولوله کربن و مولکول های کروسین)                                                           26
1-3- مقدمه........................................................................................................................... 27
3-2- بخش تجربی..................................................................................................................28
3-2-1- مواد ومعرف-ها...........................................................................................................28
3-2-2- دستگاه¬ها و وسایل مورد نیاز......................................................................................29
3-2-3-  روش تهیه الکترود کربن سرامیک Bare و اصلاح شده با نانولوله کربن به روش
سل-ژل...................................................................................................................................29
3-2-3-1- روش تهیه الکترود کربن سرامیک اصلاح شده با مولکول های کروسین.................29
3-3- بررسی الکتروشیمی فیلم نانولوله کربن-کروسین تشکیل شده در سطح الکترود ..............31
3-4- تاثیر استفاده از نانولوله کربن در رفتار الکتروشیمیایی کروسین جذب شده در سطح الکترود...................................................................................................................................32
3-5- فعالیت الکتروشیمیایی الکترود CCE/CNTs/Cro در سرعت¬های روبش مختلف............33
3-6- محاسبه ضریب انتقال بار و ثابت سرعت انتقال الکترون برای الکترود اصلاح¬شده............ 34
3-7- محاسبه غلظت  سطحی کروسین در سطح الکترود..........................................................36
3-8- بررسی میزان پایداری فیلم کروسین جذب شده  تشکیل شده در سطح الکترود...............36
3-9- بررسی رفتار الکتروشیمیایی فیلم کروسین جذب شده در سطح الکترود در pH های متفاوت...................................................................................................................................37
3-10- خواص الکتروکاتالیزوری فیلم CNTs/Cro برای اکسیداسیون الکتروکاتالیزوری NADH..................................................................................................................................38
3-11- بررسی رفتار الکتروشیمیایی الکترود کربن سرامیک اصلاح شده با نانولوله کربن و کروسین در غلظت های متفاوتی از NADH  ..........................................................................40
3-12- محاسبه ثابت سرعت کاتالیزوری برای اکسیداسیون   NADH توسط الکترود کربن سرامیک اصلاح شده با CNTs/Cro........................................................................................41
 3-13-بررسی تاثیر PH محلول روی اکسیداسیون الکتروکاتالیزوری  NADH ...................... 41
3-14- تعیین محدوده خطی NADH با الکترود کربن سرامیک اصلاح شده با نانولوله کربن و کروسین..................................................................................................................................42 3-15- تعیین حساسیت و حد تشخیص الکترود اصلاح¬شده برای اندازه‌گیری NADH ............44
3-16- بررسی پایداری پاسخ الکترود اصلاح¬شده نسبت به اکسیداسیون الکتروکاتالیزوری NADH........................................................................................................................................................45
3-17- نتیجه¬گیری .................................................................................................................46
فصل چهارم (تعیین آمپرومتری پریدات با استفاده از الکترود کربن شیشه ای اصلاح شده با نانو ذرات اکسید روتنیم )                                                                                                                               47
4- 1- مقدمه ..........................................................................................................................48
4 -2- بخش تجربی................................................................................................................48
4- 2- 1-  مواد و معرف ها.....................................................................................................48
4-2- 2- دستگاهها و تکنیک‌های اندازه‌گیری.........................................................................49
4-2-3- روش تهیه نانوذرات اکسید روتنیم در سطح الکترود کربن شیشه‌ای............................49
4-2- 4- روش تهیه الکترود اصلاح شده با نانوذرات اکسید روتنیم وسلستین بلو.......................51
4-3-  محاسبه سطح موثر الکترود کربن شیشه‌ای اصلاح شده با نانوذرات اکسید روتنیم ...........51
4- 4-  بررسی الکتروشیمی فیلم  نانوذرات اکسید روتنیم- سلستین بلو در سطح الکترود کربن شیشه‌ای...................................................................................................................................52
4-5-  تأثیر استفاده از نانوذرات اکسید روتنیم در رفتار الکتروشیمیایی سلستین بلو جذب شده در
 سطح الکترود.........................................................................................................................53
4-6-  فعالیت الکتروشیمیایی الکترود  CB- RuOx/GC در سرعت‌های روبش مختلف........... 54
4-7- محاسبه ضریب انتقال بار و ثابت سرعت انتقال الکترون برای الکترود اصلاح شده ...........56
4-8- محاسبه غلظت سطحی سلستین بلو جذب شده در سطح نانوذرات اکسید روتنیم .............57
4- 9-  بررسی میزان پایداری فیلم‌ سلستین بلو تثبیت شده بر سطح نانوذرات اکسید روتنیم .......58
4- 10-  بررسی رفتار الکتروشیمیایی فیلم نانو ذرات اکسید روتنیم- سلستین بلو جذب شده
در سطح الکترود.................................................................................................................... 58
4-11-  بررسی رفتار الکتروشیمیایی فیلم سلستین بلو جذب شده در سطح الکترود در  PHهای مختلف................................................................................................................................. 60
4- 12- بررسی خواص الکتروکاتالیزوری فیلم RuOx- Celestine blue برای احیای الکتروکاتالیزوری پریدات.......................................................................................................61
4-13-  بررسی تاثیرpH محلول روی احیای الکتروکاتالیزوری پریدات..................................  63
4-14-  بررسی رفتار الکتروشیمیایی الکترود GC/RuOx- CB  در غلظت‌های متفاوت........63
4- 15- محاسبه ثابت سرعت کاتالیزوری برای پریدات............................................................64
4- 16- استفاده از روش آمپرومتری برای اندازه‌گیری پریدات  توسط الکترود کربن شیشه‌ای شده اصلاح شده با فیلم RuOx-  CB و تعیین محدوده کالیبراسیون خطی......................................65
 4-17-  تعیین حساسیت و حد تشخیص الکترود GC/RuOx- CB  برای تشخیص پریدات...66
  4- 18-  بررسی پایداری پاسخ الکترود GC/RuOx- CB  برای اندازه‌گیری پریدات..........67
4-19- نتیجه گیری................................................................................................................ 68
فهرست منابع...............................................................................................................................................69

 

فهرست اشکال

شکل (1-1): ساختار واکنشهای اکسایش و کاهش کروسین.............................................................................14
شکل(1-2): ساختار واکنشهای اکسایش و کاهش  سلستین بلو..........................................................................15
شکل (3-1): رفتار الکتروشیمیاییNADH ....................................................................................................27
شکل (3-2): ولتاموگرام الکترود CCE/CNTs در محلول 1 میلی مولارکروسین...........................................30
شکل (3-3): ولتاموگرام¬های الکترودCro /CCE/CNTs در محلول 1/0 مولار بافر فسفات 2سرعت روبش 50 میلی ولت بر ثانیه............................................................................................................30
شکل (3-4): ولتاموگرام¬های چرخه¬ای الکترود CCE (a) , CCE/CNTs b) و Cro /CCE/CNTs در بافر فسفات pH برابر7............................................................................................................................................31
شکل(3-5): ولتاموگرام‌های چرخه‌ای الکترود (a) CCE/Cro و (b)Cro /CCE/CNTs درمحلول 1/0 مولار بافرفسفات7................................................................................................................................32
شکل (3-6): ولتاموگرام چرخه‌ای الکترود Cro /CCE/CNTs در سرعت های روبش 20-100 میلی ولت بر ثانیه در محلول بافر فسفات 2..................................................................................................33
شکل (3-7): نمودار جریان برحسب سرعت روبش برای الکترود اصلاح شده با نانولوله کربن و مولکول های کروسین...........................................................................................................................................................36
شکل (3-8): ولتاموگرام¬های الکترود اصلاح¬شده با نانولوله کربن و مولکول های کروسین (a)در دومین (b) در یکصدمین چرخه پتانسیل..................................................................................................................................37
شکل (3-9): ولتاموگرام¬های چرخه¬ای الکترودCro /CCE/CNTs درمحلول بافر فسفات M1/0 در pH  های 2تا9 در سرعت روبش 50 میلی ولت بر ثانیه.....................................................................................................38
شکل(3-10): ولتاموگرام¬های چرخه¬ای الکترود  در حضور (b) 3 میلی مولار NADHدر محلول 1/0 مولار بافر فسفات با pH برابر 7 در سرعت روبش 50میلی ولت بر ثانیه برای الکترود (a) CCE/CNTs و CCE/CNTs/Cro(b   ..............................................................................................................................39
شکل (3-11): ولتاموگرام¬ الکترود CCE/CNTs/Cro  در محلول 1/0 مولار بافر فسفات 7 در غلطت های مختلف 0 تا 300 میکرو مولار NADH در سرعت روبش 50 میلی ولت بر ثانیه...............................................40
شکل (3-12): ولتاموگرام¬های چرخه¬ای الکترود اصلاح¬شده CCE/CNTs/Cro در بافر فسفات 1/0 مولاردر محدوده PH 2 تا 8 و در حضور 44 میکرو مولارNADH..............................................................................42
شکل(3-13): آمپروگرام الکترود  CCE/CNTs/Cro بعد از هر بار تزریق 100 میکرو مولار NADH به محلول 1/0 مولار بافر فسفات باpH  برابر 7 در سرعت چرخش الکترود 2000 دور بر دقیقه و پتانسیل ثابت25/0 ولت. شکل B نمودار جریان بر حسب غلظتNADH....................................................................................43
شکل( 3-14): آمپروگرام الکترود CCE/CNTs/Cro بعد از هر بار تزریق 20 میکرو مولار NADH به محلول
1/0 مولار بافر فسفات با  pHبرابر 7 در سرعت چرخش الکترود 2000 دور بر دقیقه و پتانسیل ثابت 25/ولت. شکل :B نمودار جریان در برابر غلظت NADH.............................................................................................45
شکل(3-15): آمپروگرام الکترود CCE/CNTs/Cro بعد از تزریق 200 میکرو مولار NADH به محلول 1/0
مولار بافر فسفات با pH برابر 7 در پتانسیل ثابت 25/0 ولت و سرعت چرخش 2000 دوربر دقیقه،در مدت 48 دقیقه................................................................................................................................................................46
شکل (4-1) ساختار پریدات سدیم...................................................................................................................48
شکل (4-2) ولتاموگرام مربوط به تشکیل نانوذرات اکسید روتنیم در سطح الکترود کربن شیشه‌ای.....................49
شکل (4-3)  ولتاموگرام مریوط به پایداری فیلم RuOx تشکیل شده بر سطح الکترود کربن شیشه¬ای...............50
شکل (4-4) تصاویرSEM مربوط به الکترود کربن شیشه‌ای اصلاح نشده و اصلاح شده با نانوذرات اکسیدروتنیم ........................................................................................................................................................................51
شکل(4-5) ولتاموگرام‌های چرخه‌ای برای (a) جذب سلستین سطحی شده در سطح الکترود کربن شیشه‌ای، (b)  الکترود CB - RuOx/GC .........................................................................................................................53
شکل (4-6): (A) ولتاموگرام¬های چرخه‌ای الکترودGCE/CoOxNPs  در شیشه ای (b) RuOx  درمحلول 1/0 مولار بافر فسفات2....................................................................................................................................54
شکل (4-7) ولتاموگرام‌های  چرخه‌ای الکترود CB- RuOx/GC در سرعت‌های روبش مختلف...................55
شکل (4-8): ولتاموگرام‌های چرخه‌ای الکترود اصلاح شده با نانوذرات اکسید روتنیم و سلستین بلو(a)در دومین و (b) در یکصدمین چرخه پتانسیل.......................................................................................................................58
شکل (4-9): ولتاموگرام¬های چرخه¬ای الکترود (a) GC, (b) GC/RuOx و (b)GC/RuOx/CB   در محلول بافر فسفات 2........................................................................................................................................59
شکل(4-10): ¬ولتاموگرام‌های الکترود GC/RuOx-CB  در pH های مختلف. در حاشیه شکل، نمودار پتانسیل فرمال بر حسب pH نشان داده شده است..........................................................................................................60
شکل (4-11): ولتاموگرام‌های چرخه‌ای الکترود GC در غیاب(a) و در حضور(b) 40 میکرو مولار پریداتو (c) و (d)  به ترتیب همانند (a) و (b)  برای الکترودGC/RuOx. CB-..................................................................62
شکل (4-12): ولتاموگرام‌های چرخه‌ای الکترود GC/RuOx-  CB در pH های 2 تا 9 در حضور40  میکرو مولارپریدات....................................................................................................................................................63
شکل (4-13): ولتاموگرام‌های چرخه‌ای الکترود GC/RuOx-  CBدر غلظت‌های مختلفی از پریدات در حاشیه شکل، نمودار جریان کاتالیزوری بر حسب غلظت نشان داده شدهاست..............................................................64
شکل (4-14): آمپروگرام الکترود GC/RuOx- CB  بعد از هر بار تزریق 250 میکرو مولارپریدات به محلول ........................................................................................................................................................................65
شکل (4-15): آمپروگرام الکترود GC/RuOx- CB  بعد از هر بار تزریق 5 میکرو مولار  پریدات به محلول.............................................................................................................................................................67
شکل (4-16): آمپروگرام الکترود GC/RuOx- CB  بعد از تزریق 250 میکرو مولارپریدات به محلول.........68

چکیده
در بخش اول این پروژه، نوع جدیدی حسگر برای اندازه گیری نیکوتین آمید دی نوکلئوتید اسید (NADH)  با استفاده از تکنیک سل-ژل و اصلاحگر کروسین و نانولوله کربن ساخته شده است. این الکترود اصلاح شده خاصیت الکتروکاتالیزوری خوبی نسبت به اکسیداسیون NADH در pH=7 از خود نشان می دهد. (پتانسیل اکسایش 25/0 ولت نسبت به الکترود مرجع ). از آمپرومتری هیدرودینامیک برای اندازه گیری NADH در سطح الکترود کربن سرامیک اصلاح‌ شده استفاده شد. حد تشخیص ، حساسیت و محدوده کالیبراسیون خطی نسبت به NADH به ترتیب µM 2، nA.µM-1 4/2، 2-2500 میکرو مولار در زمان پاسخ دهی کمتر از یک ثانیه محاسبه شد.
در بخش دوم این پروژه، یک روش جدید برای اکسیداسیون الکتروکاتالیزوری پریدات با استفاده از الکترود کربن شیشه¬ای اصلاح¬شده با نانوذرات اکسید روتنیم انجام شده است. نانوذرات اکسید روتنیم نیز به وسیله¬ی روش الکتروشیمیایی در سطح الکترود کربن شیشه¬ای سنتز شده-اند. حدتشخیص، حساسیت و ثابت سرعت کاتالیزوری الکترود اصلاح¬شده برای -IO4 به ترتیب µM 1/6، nA.µM-1 7/9 و محدوده غلظت خطی تا 4 میلی مولار محاسبه شد. الکترود اصلاح¬شده پاسخ الکتروشیمیایی، حساسیت، پایداری و تکرارپذیری خوبی را نشان می¬دهد.


دانلود با لینک مستقیم