فایلکو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

فایلکو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

موقعیت یابی پراکنده گرهای الکترومغناطیسی با استفاده از الگوریتم های بازسازی خطی و غیرخطی

اختصاصی از فایلکو موقعیت یابی پراکنده گرهای الکترومغناطیسی با استفاده از الگوریتم های بازسازی خطی و غیرخطی دانلود با لینک مستقیم و پر سرعت .

موقعیت یابی پراکنده گرهای الکترومغناطیسی با استفاده از الگوریتم های بازسازی خطی و غیرخطی


موقعیت یابی پراکنده گرهای الکترومغناطیسی با استفاده از الگوریتم های بازسازی خطی و غیرخطی

 

موقعیت­ یابی پراکنده­ گرهای الکترومغناطیسی با استفاده از الگوریتم ­های بازسازی خطی و غیرخطی برای کاربردهای تصویربرداری مایکروویو

165 صفحه در قالب word

 

 

 

فهرست مطالب:

 

 

1

فصل اول : مقدمه

1

1-1- پیش گفتار   ..........................................................................................................     

6

1-2- پیشینه پژوهش  ....................................................................................................

10

1-3- ساختار رساله   ......................................................................................................

 

 

12

فصل دوم : تصویربرداری مایکروویو  

12

2-1- مقدمه  ..................................................................................................................

13

2-2- مقایسه روش‌های مختلف تصویربرداری  .................................................................. 

14

2-2-1- تصویربرداری با اشعه X   ........................................................................

16

2-2-2- تصویربرداری به روش MRI  ...................................................................

18

2-2-3- تصویربرداری با اشعه مافوق صوت  ............................................................

19

2-2-4- تصویربرداری با اشعه مایکروویو   ..............................................................

21

2-3- مروری بر روش­های مختلف تصویربرداری مایکروویو   ..............................................

24

2-4- چالش­های موجود در تصویربرداری مایکروویو  ......................................................... 

24

2-4-1- مقدمه  ..................................................................................................

24

2-4-2- سیگنال­های چند مسیری  ......................................................................

26

2-4-3- چالش­های استفاده از محیط با اتلاف  .......................................................

26

2-4-3-1- تاثیر القای متقابل  .....................................................................

27

2-4-3-2- گستره دینامیکی بخش الکترونیک  .............................................

27

2-4-3-3- ایزولاسیون کانال به کانال ...........................................................

28

2-4-3-4- انتخاب آنتن ...............................................................................

29

2-4-3-5- نویز محیط زمینه  ......................................................................

29

2-5- مروری بر سیستم­های عملی تصویربرداری مایکروویو  ..............................................

29

2-5-1- سیستم تصویربرداری دانشگاه Dartmouth  .............................................

31

2-5-2- سیستم تصویربرداری توسعه یافته دانشگاه Dartmouth  ...........................

34

2-5-3- سیستم تصویربرداری مایکروویو در دانشگاه Manitoba  ............................

36

2-5-4- سیستم تصویربرداری Fresnel  ...............................................................

38

2-5-5- سیستم تصویربرداری Barcelona  ............................................................

40

2-5-5-1- آرایه استوانه­ای  .........................................................................

41

2-5-5-2- شبکه سوئیچینگ  .....................................................................

42

2-5-5-3- داده­برداری و کالیبراسیون  .........................................................

 

 

44

فصل سوم : روش­های موقعیت­یابی پراکنده­گرهای الکترومغناطیسی در تصویربرداری مایکروویو   

44

3-1-  مقدمه  ..............................................................................................................

49

3-2- معادلات مربوط به روش تصویربرداری با  MUSIC ..................................................   

54

3-2-1- الگوریتم معکوس زمانی MUSIC  ...........................................................    

56

3-3- بررسی عملکرد الگوریتم MUSIC در موقعیت­یابی  .................................................  

56

3-3-1- تاثیر نویز  ................................................................................................

59

3-3-2- تاثیر فاصله بین پراکنده­گرها  ...................................................................

61

3-3-3- تاثیر ابعاد پراکنده­گرها  ............................................................................

63

3-3-4- تاثیر تعداد پراکنده­گرها  ...........................................................................

65

3-4- تخمین تعداد پراکنده­گرها  ....................................................................................

 

 

67

فصل چهارم : یک روش تحلیلی جدید جهت تخمین تعداد پراکنده­گرها به کمک الگوریتم MUSIC 

67

4-1- مقدمه  ...............................................................................................................

68

4-2- مروری بر تئوری تصویربرداری با MUSIC  ...........................................................

69

4-3- روش­های تخمین شدت پراکندگی اهداف  ..............................................................

72

4-4- روش پیشنهادی  ...................................................................................................

73

4-4-1- حالت تقریب Born  .................................................................................

79

4-4-2- حالت وجود برهم­کنش بین اهداف  ...........................................................

80

4-4-3- پیچیدگی محاسباتی روش پیشنهادی  ......................................................

81

4-5- شبیه­سازی­های عددی ............................................................................................

81

4-5-1- شبیه­سازی با آرایه Coincident  ..............................................................

87

4-5-2- شبیه­سازی با آرایه Non-coincident  ......................................................

90

4-6- شبیه­سازی با داده عملی  .......................................................................................

92

4-7- جمع­بندی مطالب  .................................................................................................

93

4-8- ضمیمه   ...............................................................................................................

 

 

97

فصل پنجم : الگوریتم MUSIC توسعه یافته جهت موقعیت­یابی پراکنده­گرها در سیستم­های عملی تصویربرداری مایکروویو 

97

5-1- مقدمه  ...............................................................................................................

100

5-2- داده­برداری در یک سیستم تصویربرداری مایکروویو واقعی  .....................................

101

5-3- روش پیشنهادی  .................................................................................................

102

5-3-1- مدل ریاضی مساله داده­برداری  .................................................................

105

5-3-2- روش­های تخمین حداقل مربعات  .............................................................

108

5-4- شبیه­سازی عددی  .................................................................................................

109

5-4-1- شبیه­سازی با داده تولید شده از مدل Foldy-Lax  ....................................

121

5-4-2- شبیه­سازی با داده تولید شده توسط روش FDTD ....................................

126

5-5- شبیه­سازی با داده عملی ........................................................................................

131

5-6- جمع­بندی مطالب  .................................................................................................

 

 

132

فصل ششم :  نتیجه گیری و پیشنهادات  

132

6-1- نتیجه گیری  .......................................................................................................

135

6-2- پیشنهادات ............................................................................................................

137

مراجع    .............................................................................................................................

 

چکیده:

 

تصویربرداری مایکروویو توسط بسیاری از محققین مورد توجه قرار گرفته و در طول چند دهه اخیر توسعه داده شده است. تصویربرداری مایکروویو یک مساله پراکندگی معکوس بوده و روشهایی که برای حل مسائل پراکندگی معکوس به کار می­روند را می­توان به دو دسته کلی روش­های خطی و غیرخطی تقسیم نمود. روشهای پراکندگی معکوس غیرخطی، قادر به بازسازی کمی اهداف می­باشند ولی به علت محاسبات زیاد، کاربرد آنها در سیستم­های عملی با محدودیت روبروست. اخیراً روشهای پراکندگی معکوس خطی مبتنی بر پردازش زیر فضا مانند روش MUSIC جهت حل مشکلات الگوریتم­های غیرخطی پیشنهاد شده­اند. روش MUSIC قادر به موقعیت­یابی اهداف از روی نقاط قله طیف شناخته شده می­باشد. برای تشکیل این طیف، تعداد اهداف می­بایست از قبل معین باشد. حضور نویز باعث بوجود آمدن ابهام جهت تعیین تعداد اهداف می­شود.

در این رساله، یک روش تحلیلی جهت تخمین موقعیت و تعداد هدف­های با ابعاد کوچک در مسائل تصویربرداری 2 بعدی ارائه شده است. در این روش در مرحله اول، از الگوریتم MUSIC استفاده شده و تمام موقعیت­های ممکن برای اهداف بدست می­آید و در مرحله بعد، با به کار بردن یک فرمول تحلیلی که مانند یک فیلتر مکانی عمل می­کند، هدف­های واقعی از هدف­های مجازی جدا می­شوند. نتایج شبیه سازی­ها قابلیت روش پیشنهادی را به اثبات می­رساند.

الگوریتم MUSIC بر اساس تجزیه SVD ماتریس  MSRکار می­کند و این ماتریس در سیستم­های واقعی تصویربرداری مایکروویو کامل نمی­باشد. در این رساله، روشی جهت تکمیل داده­های ماتریس MSR اندازه­گیری شده از سیستم­های عملی پیشنهاد شده است. در این روش، به کمک روش تخمین حداقل مربعات، داده­های نامعین ماتریس MSR تخمین زده شده و ماتریس کامل MSR (CMSR) شکل می­گیرد. داده­های نامعین ماتریس MSR مربوط به سیگنال در گیرنده­های غیرفعال به ازای هر فرستنده فعال می­باشد. روش پیشنهادی با استفاده از داده عملی موسسه Fresnel  مورد آزمایش قرار گرفته و همچنین به ازای داده­های مختلف شبیه­سازی شده مشابه داده واقعی، تست و آزمایش شده است.

پیش­گفتار

امروزه سرطان سینه یک مشکل جدی برای دنیای مدرن به حساب می­آید. طبق آمار سازمان سلامت جهانی، این سرطان معمولترین نوع سرطان در زنان می­باشد و بیش از 30 درصد از زنان در طول مدت زندگی به این سرطان مبتلا می­شوند ]1[. تشخیص اولیه سرطان کلیدی برای درمان موفق آن می­باشد. روش­های تصویربرداری مختلفی جهت تشخیص سرطان سینه استفاده می­شود که یکی از این روش­ها تصویر برداری مایکروویو[1] می­باشد. این روش تصویر­برداری نسبت به روش تصویربرداری CT[2] و روش MRI[3] دارای مزیت­هایی از قبیل قابلیت بالای تشخیص بافت سرطانی به علت کنتراست زیاد بافت سالم و بافت سرطانی در باند مایکروویو، استفاده از تشعشع غیر یونیزه (مضر نبودن) و هزینه نسبتا پایین می­باشد ]2[. چالش اصلی برای رقابت روش تصویربرداری مایکروویو با روشهای CT و MRI قدرت تفکیک­پذیری پایین­تر این روش تصویربرداری نسبت به دیگر روش­ها می­باشد. روش تصویربرداری مایکروویو توسط پژوهشگران ژئوفیزیک برای تست­های غیرمخرب[4] بر روی زمین ]3[، جهت مصارف نظامی از قبیل هالوگرافی داده­های رادار، در پردازش داده­های GPR[5]] 4[ و ]5[ ، بیوپزشکی ]6[، مهندسی عمران و کنترل ساختارهای فلزی عمیق به منظور آشکارسازی عیوب، تغییرات یا شکاف­های ایجاد شده در این ساختارها] 9-7[، تشخیص ساختار کریستال، بررسی میکروسکوپی اشعه ایکس منطبق و نوری و پراکندگی معکوس موج الاستیک] 10[ بکار گرفته شده است.

تحقیقات جدی بر روی بکارگیری تصویربرداری مایکروویو در مهندسی پزشکی جهت تشخیص سرطان سینه از دهه 90 آغاز شده و ساخت دستگاه­های نمونه MI، پتانسیل بالای کاربردی این روش را نشان داده است ]11[. کاربردهای پزشکی این روش شامل تشخیص سرطان سینه، تصویربرداری از سر انسان، تشخیص سرطان ریه، کبد و شش، تصویر برداری از استخوان و تشخیص کم خونی موضعی در اجزای مختلف انسان می­باشد. در کاربرد تشخیص سرطان سینه، بافت سینه در یک محیط زمینه همگن قرار گرفته و توسط تعدادی فرستنده­ باند مایکروویو تحت تشعشع قرار می­گیرد. میدان الکترومغناطیسی پراکنده شده­ ناشی از بافت سینه و ناهمگنی­های موجود در آن توسط تعدادی گیرنده دریافت می­گردد و سپس با پردازش داده­های اندازه­گیری شده، امکان بازسازی توزیع گذردهی مختلط[6] (پروفایل) بافت سینه و تشخیص موقعیت، شکل و تعداد پراکنده­گرهای موجود در آن (سلول­های سرطانی) فراهم می­شود.

بازسازی کامل توزیع CP شیء، یک مساله پراکندگی معکوس می­باشد. بطور کلی دو دسته مسائل پراکندگی شامل مسائل پراکندگی مستقیم[7] و معکوس[8] در الکترومغناطیس وجود دارد:

الف) مسائل پراکندگی مستقیم که حل آنها از طریق حل معادلات دیفرانسیل یا حل معادله انتگرالی میدان الکتریکی به ازای توزیع گذردهی معین برای شیء بدست می­آید. معادله انتگرالی میدان الکتریکی که در آن میدان داخل شیء بصورت تابعی از خودش ظاهر می­شود، یک معادله­ انتگرالی غیر خطی بوده و در اغلب موارد نمی­توان یک جواب تحلیلی برای آن ارائه کرد. لذا از روش­های عددی حوزه­ زمان و فرکانس برای حل مساله پراکندگی مستقیم استفاده می­شود. در روش­های حوزه زمان معادلات ماکسول در حوزه زمان بطور عددی حل شده و  خطای ناشی از غیر ایده­آل بودن شرایط مرزی ، بار محاسباتی بالا و افزایش این دو با بزرگتر شدن اندازه شیء از جمله محدودیت­های این روش­ها می­باشند. این روش­ها برای کاربردهای باند وسیع مناسب بوده و نمونه­ای از آنها [9]FDTD  ،[10]FVTD  و [11]FETD  می­باشند ]14-12[. در روش­های حوزه فرکانس، معادلات فازوری ماکسول بطور عددی برای یک فرکانس خاص حل شده و لذا برای کاربردهای باند باریک مناسب می­باشند. یک نمونه از این روش­ها، روش[12]MOM  است. این روش، معادلۀ انتگرالی ماکسول را جزء جزء کرده و به معادله ماتریسی خطی تبدیل و سپس حل می­کند. روش MOM، یک روش دقیق بوده ولی به علت معادلات ماتریسی حجیم حاصل شده، دارای سرعت کم  و محدود به اشیاء با اندازه کوچک می­شود.

روشی دیگر در حوزه فرکانس، بر اساس بسط میدان پراکندگی به سری Born برای حل معادله انتگرالی ماکسول است. این روش سریعتر از روش MOM می­باشد و برای اشیاء با اندازه کوچک که تغییرات ناهمگنی آنها بر حسب مختصات مکانی هموار است مناسب خواهد بود ]15[.

ب) مسائل پراکندگی معکوس که در آنها با اندازه­گیری امواج پراکنده شده از محیط مزبور و با معلوم بودن میدان تابیده شده، شکل و یا پارامترهای موانع موجود در محیط را تعیین می­کنند. بطور کلی مسائل معکوس در زمینه­های زیادی مانند پراکندگی الکترومغناطیس، CT ، سنجش از دور، ژئوفیزیک، هواشناسی و ... بکار می­روند. این مسائل اغلب بد وضعیت[13] می­باشند. هادامارد[14] در سال 1923 سه شرط برای خوش وضعیت بودن[15] مسائل مطرح کرد. تخطی از هر کدام از شرط­ها باعث بد تعریف شدن مساله می­شود. 1- جواب مساله موجود باشد ، 2- جواب مساله یکتا[16] باشد و 3- جواب مساله بطور پیوسته به داده ورودی وابسته باشد. برای بسیاری از مسائل وجود داشتن جواب موضوع اصلی نبوده و چالش اصلی در حل مسائل معکوس مربوط به دو موضوع یکتایی جواب و پایداری آن می­باشد. برای حل مشکل بد­ تعریف بودن این مسائل از روش­های مختلف رگولاسیون[17] استفاده می­شود. یکی از معروفترین روش­های رگولاسیون روش Thikhonov می­باشد که در سال 1963 توسط Thikhonov مطرح شده و از یک کتاب ریاضی منشا گرفته است ]16[. در زمینه توسعه روش­های مختلف رگولاسیون برای مسائل معکوس بخصوص مسائل پراکندگی معکوس الکترومغناطیس، تاکنون کارهای زیادی صورت گرفته و در حال انجام می­باشد و این زمینه کاری، یک زمینه باز تحقیقاتی می­باشد.

 

چون فقط تکه هایی از متن برای نمونه در این صفحه درج شده است ممکن است هنگام انتقال از فایل اصلی به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود، ولی در فایل دانلودی همه چیز مرتب و کامل می‌باشد.
متن کامل با فرمت
word را که قابل ویرایش و کپی کردن می باشد، می توانید در ادامه تهیه و دانلود نمائید.


دانلود با لینک مستقیم


موقعیت یابی پراکنده گرهای الکترومغناطیسی با استفاده از الگوریتم های بازسازی خطی و غیرخطی

سمینار کارشناسی ارشد برق بررسی انواع واحدهای تولید پراکنده و تاثیرات مفید آنها بر شبکه های توزیع

اختصاصی از فایلکو سمینار کارشناسی ارشد برق بررسی انواع واحدهای تولید پراکنده و تاثیرات مفید آنها بر شبکه های توزیع دانلود با لینک مستقیم و پر سرعت .

سمینار کارشناسی ارشد برق بررسی انواع واحدهای تولید پراکنده و تاثیرات مفید آنها بر شبکه های توزیع


سمینار کارشناسی ارشد برق بررسی انواع واحدهای تولید پراکنده و تاثیرات مفید آنها بر شبکه های توزیع

این محصول در قالب  پی دی اف و 76 صفحه می باشد.

 

این سمینار جهت ارائه در مقطع کارشناسی ارشد رشته مهندسی برق-قدرت طراحی و تدوین گردیده است . و شامل کلیه مباحث مورد نیاز سمینار ارشد این رشته می باشد.نمونه های مشابه این عنوان با قیمت های بسیار بالایی در اینترنت به فروش می رسد.گروه تخصصی ما این سمینار را با قیمت ناچیزی جهت استفاده دانشجویان عزیز در رابطه با منبع اطلاعاتی در اختیار شما قرار می دهند. حق مالکیت معنوی این اثر مربوط به نگارنده است. و فقط جهت استفاده ازمنابع اطلاعاتی و بالابردن سطح علمی شما در این سایت ارائه گردیده است.

 


چکیده:

تولیدات پراکنده منابع تولید انرژی الکتریکی هستند که به شبکه توزیع متصل می گردند. این منابع در مقایسه با ژنراتورهای بزرگ و نیروگاهها، حجم و ظرفیت تولید کمتری داشته و با هزینه پایین تری راه اندازی می شوند. اتصال این تولیدات به شبکه های توزیع منافع و سودمندی های زیادی به دنبال دارد.در این سمینار به بررسی تاثیرات مفید تولیدات پراکنده بر قابلیت اطمینان شبکه های توزیع پرداخته شده است.و نتایج ارزیابی قابلیت اطمینان شبکه های توزیع در قالب شاخص های نقاط بار و کل سیستم مورد بررسی قرار گرفته است.در این سمینار به بررسی تأثیر مکان واحدهای تولید پراکنده تأثیر تعداد واحدهای تولید پراکنده تأثیر ظرفیت واحدهای تولید پراکنده و تأثیر احتمال عدم دسترسی به واحدهای تولید پراکنده بر روی یک سیستم نمونه پرداخته شدو مشاهده گردید که همواره، قرار گیری صحیح با ظرفیت و تعداد مناسب از منابع تولید پراکنده افزایش قابل ملاحظه ای در میزان قابلیت اطمینان سیستم های توزیع خواهد داشت . مقدمه:

امروزه با تغییر و پیشرفت روز افزون در صنعت بـرق شـاهد بـروز تحـولات عمـده ای هـستیم کـه تحـت عنوان کلی تجدید ساختارصنعت برق مطرح می گردند، انقلابی که آهسته آهسته روش ارتبـاط مـا را بـا بازار انرژی تغییر می دهـد . بخـشی از ایـن تحـول اجتنـاب ناپـذیر کـه در بخـش تو لیـد تـوان انجـام مـی شودتکنولوژی تولید پراکنده است[1] . تولیدات پراکنده منابع تولید انرژی الکتریکی هستند که به شبکه توزیع متصل می گردند. این منابع در مقایسه با ژنراتورهای بزرگ و نیروگاهها، حجم و ظرفیت تولید کمتری داشته و با هزینه پایین تری راه اندازی می شوند. همچنین اتصال این تولیدات به شبکه های توزیع منافع و سودمندی های زیادی به دنبال دارد. از جمله مواردی که استفاده از واحدهای تولید پراکنده را مورد توجه قرار می دهد می توان به مسائلی نظیر مسائل اقتصادی در توسعه نیروگاهها، کاهش آلودگی محیط زیست، بالا بردن بازدهی این منابع در تولید برق، بالا بردن کیفیت برق رسانی به مشتریان، کاهش تلفات در شبکه های توزیع، بهبود پروفیل ولتاژ، آزاد سازی ظرفیت شبکه و بسیاری از موارد دیگر اشاره نمود.


دانلود با لینک مستقیم


سمینار کارشناسی ارشد برق بررسی انواع واحدهای تولید پراکنده و تاثیرات مفید آنها بر شبکه های توزیع

دانلود مقاله اصول جستجوی پراکنده

اختصاصی از فایلکو دانلود مقاله اصول جستجوی پراکنده دانلود با لینک مستقیم و پر سرعت .

 

چکیده
جستجوی پراکنده یک روش تکاملی است که بصورت موفقیت آمیز برای مسائل سخت در مورد بهینه سازی بکار می رود. اصول و مفاهیم اساسی این روش در دهه 1970 بر اساس فرمول هایی پیشنهاد شد که به تاریخ دهه 1960 برای ترکیب قواعد تصمیم گیری و محدودیت های مسئله باز می گشت. جستجوی پراکنده بر خلاف روشهای تکاملی دیگر (مانند الگوریتم های ژنتیک)، بر اساس این قضیه پی ریزی شده است که روش ها و طرح های سیستماتیک برای ایجاد راه حل های جدید، مزایای مهم تری در مقایسه با مزایای توسل به انتخاب تصادفی دارند. این روش از استراتژی هایی برای تقویت و تنوع بخشی به جستجو استفاده میکند که اثبات شده است که در مسائل بهینه سازی متعددی مؤثر هستند.
این مقاله اصول و ایده های اصلی از جستجوی پراکنده و مرتبط سازی دوباره مسیر تشکیل آن را بیان میکند. ما ابتدا یک طرح مبنا را توصیف میکنیم تا ابزاری برای ایجاد عملکردهای نسبتاً ساده را به خواننده داده باشیم. طرح های پیشرفته تر از این حقیقت برگرفته می شوند که جستجوی پراکنده و مرتبط سازی دوباره مسیر نیز بصورت اساسی با کاوش متای جستجوی ممنوعه (TS) مرتبط هستند، و مزیت اضافی را توسط استفاده از مکانیزم های استفاده از حافظه و حافظه انطباقی جستجوی ممنوعه به ما میدهند که برای زمینه های خاصی مناسب هستند. این فرآیند ها و فرآیند های پیشرفته دیگر که در این مقاله توصیف شده اند، ایجاد عملکردهای پیچیده را برای مسائلی تسهیل میکنند که اغلب در محیط عملی پیش می آیند. جستجوی پراکنده و مرتبط سازی دوباره مسیر را بعلت انعطاف پذیری و کارایی اثبات شده خود، میتوان با مسائل بهینه سازی سازگار کرد که شامل دامنه کاربردهای وسیع و مجموعه متنوعی از ساختارهای هستند، همانطور که در مقالات این مجموعه نشان داده شده است.
کلمات کلیدی: کاوش متا، روشهای تکاملی، ترکیب، مرتبط سازی دوباره مسیر

 

1- مقدمه
جستجوی پراکنده (SS) ابتدا در مطالعه گلاور (1977) بعنوان کاوشی برای برنامه سازی صحیح معرفی شد. در طرح اولیه، راه حل هایی بصورت عمدی (به بصورت تصادفی) ایجاد شدند تا خصوصیات آنرا در بخش های مختلف فضای راه حل مورد توجه قرار دهد. جستجوی پراکنده کاوش های خود را بصورت سیستماتیک نسبت به یک سری نقاط مرجع تنظیم میکند که عموماً از راه حل های خوبی تشکیل شده اند که توسط تلاشهای قبلی برای حل مسئله بدست آمده اند، که معیار موجود برای "خوب" محدود به مقادیر تابع هدف نیست، و ممکن است برای زیرمجموع های راه حل ها (و نه برای یک راه حل منفرد) اعمال گردند، مانند مورد مربوط به راه حل هایی که مطابق با خصوصیات معینی، با هم تفاوت دارند.
ترکیبات خطی وزنی مکانیزم اصلی را برای ایجاد نقاط آزمایشی در فضای شامل نقاط مرجع ایجاد میکنند، و مکانیزم روندسازی تعمیم یافته ای را نیز ایجاد میکند تا اطمینان حاصل کند که نقاط آزمایشی دارای شرایط امکان پذیری عدد صحیح در حالتی هستند که بعضی متغیرها نیازمند این هستند که مقادیر صحیح را دریافت کنند. این مکانیزم ها به سمت هدف ایجاد مراکز وزنی از مناطق فرعی انتخاب شده (از جمله مناطق خارجی نسبت به غلاف کوژ نقاط مرجع) متمایل می گردند.
الگوی جستجوی پراکنده (گلاور 1998) بعنوان مرجع اصلی برای اغلب عملکردهای جستجوی پراکنده تاکنون عمل کرده است. الگوی های پراکندگی ایجاد شده توسط این طرح ها در چندین زمینه کاربردی سودمند بوده اند. بخش 2 توصیف جامعی از عناصر و روشهای این الگوی استفاده شده بر مبنای فرمول داده شده در مطالعه لاگوندا و مارتی (2003) ارائه میدهد. با پیروی از این مسئله، بخش 3 طرح های جستجوی پراکنده پیشرفته متفاوتی (از جمله بعضی از ویژگی های اخیر، مانند بروزرسانی سری منابع 3 ردیفی و کاربردهای مرتبط به حافظه) را بررسی میکند. بخش 4 به روش شناسی مرتبط سازی دوباره مسیر اختصاص داده شده است که جستجوی پراکنده را تا محیط فضاهای مجاور (از جمله کاربردهای مبنا و کاربردهای پیشرفته) گسترش میدهد، و در آخر مقاله نیز نتیجه گیری بیان شده است.
2- طرح جستجوی پراکنده مبنا
روش جستجوی پراکنده خیلی انعطاف پذیر است، چون هر کدام از عناصر آن را میتوان به شیوه های مختلف و درجات پیچیدگی مختلفی بکار برد. در این بخش ما طرح مبنایی برای انجام جستجوی پراکنده بر اساس پنج روش معروف ارائه میدهیم، و طرح های پیشرفته را در بخش بعدی توضیح میدهیم. ویژگی های پیشرفته جستجوی پراکنده مربوط به شیوه ای هستند که این پنج روش انجام می شوند. بعبارت دیگر، پیچیدگی از اجرای روش های SS می آید تا اینکه از روشهای تصمیم گیری برای شامل سازی یا حذف بعضی از عناصر بیایند (مانند جستجوی ممنوعه که در بالا بیان کردیم).
این حقیقت که مکانیزم های داخل جستجوی پراکنده محدود به یک طرح منفرد و واحد نیستند، امکان کاوش احتمالات استراتژیکی را به ما میدهد که ممکن است در یک کاربرد خاص سودمند باشند. این اصول و مشاهدات منجر به الگوی زیر برای اجرای جستجوی پراکنده می گردند که از 5 روش تشکیل شده است.
1- روش ایجاد تنوع، برای ایجاد مجموعه ای از راه حل های آزمایشی با استفاده از یک راه حل ازمایشی قراردادی (یا راه حل منشأ) بعنوان یک ورودی.
2- روش بهبود، برای تغییر یک راه حل آزمایشی به یک یا چند راه حل آزمایشی پیشرفته (نه راه حل های ورودی و نه راه حل های خروجی نیازمند این نیستند که امکان پذیر و عملی باشند، با اینکه بیشتر توقع می رود که راه حل های خروجی اینگونه باشند. اکر هیچ بهبودی از راه حل آزمایشی ورودی ایجاد نگردد، فرض می شود که راه حل تقویت شده با راه حل ورودی یکسان باشد).
3- بروزرسانی سری منابع، برای ایجاد و حفظ یک سری منابع تشکیل شده از b تعداد از بهترین راه حل های یافته شده (که مقدار b معمولاً کم است و برای مثال از 20 بیشتر نمی شود)، که سازماندهی شده است تا دسترسی مؤثر توسط قسمت های دیگر این روش را فراهم سازد. راه حل ها مطابق با کیفیت یا تنوع خود در سری منابع طبقه بندی می شوند.
4- روش ایجاد زیرمجموعه، برای عملکرد در سری منابع، تا زیرمجموعه ای از راه حل های خود بعنوان مبنایی برای ایجاد راه حل های ترکیبی ایجاد کند.
5- روش ترکیب راه حل، تا یک زیرمجموعه معین از زیرمجموعه های ایجاد شده توسط روش ایجاد زیرمجموعه را به یک یا چند بردار راه حل حل ترکیبی تبدیل کند.
شکل 1 روابط متقابل بین این پنج روش را نشان میدهد و نقش مرکزی سری منابع را بیان میکند. این طرح مبنا با ایجاد یک سری اولیه از راه حل های P آغاز می گردد، و سپس سری منابع راه حل ها (RefSet) را از آن استخراج میکند.
روش ایجاد تنوع برای ایجاد یک سری بزرگ P از راه حل های متنوع مورد استفاده قرار می گیرد. اندازه P(PSize) معمولاً حداقل 10 برابر اندازه RefSet (سری منابع) است. سری منابع اولیه مطابق روش بروزرسای سری منایع ساخته می شود. برای مثال، روش بروزرسانی سری منابع میتواند متشکل از انتخاب b بصورتمجزا و راه حل هایی با حداکثر پراکندگی از P باشد. یک مکانیزم ساده برای ساختن RefSet در پاراگراف بعدی بیان شده است و در بخش بعدی هم چندین راهکار دیگر برای اجرای روش بروزرسانی سری منایع را بررسی میکنیم. صرفنظر از قوانین استفاده شده برای انتخاب راه حل های مرجع، راه حل های RefSet مطابق با کیفیت مرتب می شوند، که بهترین راه حل، گزینه اول در لیست می باشد. سپس جستجو توسط تعیین مقدار TRUE برای متغیر بولی NewSolutions آغاز می گردد. در مرحله 3، Newsubsetsایجاد می گردد و NewSolutions به FALSE تغییر داده می شود. ساده ترین شکل روش ایجاد زیرمجموعه از ایجاد همه جفت های راه حل های مرجع تشکیل می گردد. بعبارت دیگر، این روش بر روی زیرمجموعه هایی با اندازه 2 متمرکز می گردد که منجر به ایجاد می گردد. جفت ها در NewSubsets هر کدام بصورت جداگانه و با ترتیب لغت نویسی انتخاب می گردند و روش ترکیب راه حل اعمال می گردد تا یک یا چند راه حل آزمایشی را در مرحله 5 ایجاد کند. این راه حل های آزمایشی تابع روش بهبود هستند (البته اگر روش بهبود وجود داشته باشد). روش بروزرسانی سری منابع بار دیگر در مرحله 6 اعمال می گردد. ساده ترین شکل کاربرد روش بروزرسانی مرجع در این مرحله اینست که RefSet جدید را با بهترین راه حل ها مطابق مقدار تابع هدف، از RefSet جاری و تعیین راه حل های آزمایشی ایجاد کنیم. اگر RefSet پس از کاربرد روش بروزرسانی سری منابع تغییر کند، پرچم NewSolutions در مرحله 7 به TRUE تغییر پیدا میکند، که بیانگر اینست که حداقل یک راه حل جدید در سری منابع وارد شده است. زیرمجموعه s که تابع روش ترکیب بود، در مرحله 8 از NewSubset حذف می گردد.
راهکار مبنا به پایان می رسد پس از اینکه همه زیرمجموعه ها در NewSubsetsتابع روش ترکیب باشند و هیچکدام از راه حل های آزمایشی بهبود داده شده مطابق قوانین روش بروزرسانی سری منابع برای RefSet پذیرفته نشده باشند.

شکل 1 : راهکار جستجوی پراکنده مبنا

 

سری منابع RefSet مجموعه ای از راه حل های کیفیت-بالا و راه حل های متنوع است که برای ایجاد راه حل های جدید توسط اعمال روش ترکیب، بکار می روند. ما در این طرح مبنا می توانیم از یک مکانیزم ساده برای ساخت یک سری منابع اولیه استفاده کنیم و سپس آنرا در حین جستجو بروزرسانی کنیم. اندازه سری منابع توسط نشان داده می شود. ساخت سری منابع اولیه با انتخاب بهترین راه حل از P آغاز می گردد. این راه حل ها به RefSet اضافه می گردند و از P حذف می شوند. برای هر راه حل در P-RefSet ، حداقل فواصل نسبت به راه حل ها در RefSet محاسبه می گردد. سپس راه حل با حداکثر این فواصل حداقل انتخاب می گردد. این راه حل به RefSet اضافه می گردد و از P حذف می شود و فواصل حداقل بروزرسانی می گردند (در اعمال این معیار حداکثر-حداقل، یا هرگونه معیار بر مبنای فواصل، این مسئله می تواند مهم باشد که متغیرهای مسئله را مقیاس بندی کنیم، تا از شرایطی اجتناب کنیم که یک متغیر خاص یا زیرمجموعه ای از متغیرها بر اندازه گیری فاصله حاکم باشد و همکاری مناسب مؤلفه های برداری را تغییر دهد). این فرآیند به اندازه دفعه تکرار می گردد، که می باشد. سری منابع برآیند دارای راه حل کیفیت-بالا و راه حل متنوع است.
پس از اینکه سری منابع اولیه ساخته شد، روش ترکیب برای زیرمجموعه های ایجاد شده اعمال می گردد، همانطور که در مرحله 5 از شکل 1 نشان داده شده است. در طراحی مبنا، ما از بروزرسانی استاتیک سری منابع پس از کاربرد مدل ترکیب استفاده میکنیم. راه حل های آزمایشی که بصورت ترکیبی از راه حل های مرجع ساخته می شوند، در منبع راه حل قرار داده می شوند، که توسط Pool نشان داده می شود. پس از کاربرد هر دو روش ترکیب و بهبود، Pool کامل می گردد و سری منابع بروزرسانی می گردد. سری منابع جدید متشکل از بهترین راه حل های b از راه حل های موجود در سری منابع جاری و راه حل های موجود در Pool می باشد، بعبارت دیگر سری منابع بروزرسانی شامل بهترین راه حل های b در می باشد.
از پنج روش در روش شناسی جستجوی پراکنده، فقط چهار روش بطور شدید مورد نیاز هستند. روش بهبود معمولاً زمانی مورد نیاز خواهد بود که نتایج کیفیت بالا مورد نیاز باشند، اما میتوان یک راهکار جستجوی پراکنده را بدون آن نیز انجام داد. از طرف دیگر، یک راهکار جستجوی ممنوعه کوتاه مدت را میتوان بعنوان روش بهبود بکار برد، همانطور که در بخش بعدی نیز نشان داده شده است.
3- طرح های جستجوی پراکنده پیشرفته
در هنگام بررسی استراتژی های پیشرفته در یک چارچوب کاوش متا، هدف بهبود کارایی اغلب با هدف طراحی راهکاری مغایرت دارد که اجرا و تنظیم آن آسان است. طرح های پیشرفته معمولاً (البته نه همیشه) به پارامترهای جستجوی اضافی و پیچیدگی بالاتر تبدیل می گردند. تا جاییکه ما میدانیم، هیچ دستورالعمل ساده ای وجود ندارد که توسط آن بتوانیم یک ترتیب از پیش تعیین شده را دنبال کنیم که در این ترتیب استراتژی های پیشرفته باید به بهبود کارایی اعمال جستجوی پراکنده اضافه گردند. بنابراین ترتیبی که در آن، این استراتژی ها در این بخش توصیف می گردند، اهمیت یا رتبه بندی آنها را نشان نمی دهند. یک توصیف جامع از طرح های پیشرفته را میتوان در مطالعه لاگونا و مارتی (2003) یافت.
3.1 بروزرسانی RefSetپویا
سری منابع سری منابع قلب راهکار جستجوی پراکنده است. اگر در هر زمانی در حین جستجو، همه راه حل های منابع شبیه به هم باشند – که توسط معیار مناسب اندازه گیری شده است – راهکار جستجوی پراکنده به احتمال زیاد قادر نخواهد بود که بر اساس بهترین راه حل یافت شده پیشرفت کند، حتی زمانیکه از یک راهکار پیچیده برای انجام ترکیبات یا بهبود راه حل های آزمایشی جدید استفاده کند. روش ترکیب توسط راه حل های مرجع محدود می گردد که از آنها بعنوان ورودی استفاده میکند. بنابراین داشتن پیشرفته ترین روش ترکیب مزیت کمی خواهد داشت اگر سری منابع با دقت ساخته نشوند و در حین جستجو باقی بمانند.
در طرح مبنا، راه حل های جدید که عضوی از RefSet می گردند ترکیب نمی گردند تا زمانیکه همه جفت ها در NewSubsetsتابع روش ترکیب باشند. سری منابع جدید با بهترین راه حل ها در اتحاد Pool و راه حل های جاری در RefSet ساخته می شود. این استراتژیبروزرسانی ساکن سری منابع نام دارد. راهکار دیگر، استراتژی بروزرسانی پویا نام دارد، که روش ترکیب را برای راه حل های جدید به شیوه ای اعمال میکند که راه حل های جدید را سریع تر از طرح مبنا ترکیب میکند. بعبارت دیگر، اگر راه حل جدیدی برای سری منابع پذیرفته شود، هدف این خواهد بود که به این راه حل جدید اجازه دهیم که در کمترین زمان تابع روش ترکیب باشد. بعبارت دیگر، بجای اینکه منتظر بمانیم تا همه ترکیب ها انجام شوند تا سری منابع بروزرسانی شود، اگر یک راه حل آزمایشی جدید پذیرش را در سری منابع تضمین کند، سری منابع سریعاً بروزرسانی میشود قبل از اینکه ترکیب بعدی اجرا شود. بنابراین نیازی به یک Pool میانی در این طرح نیست، چون راه حل ها یا منسوخ می گردند و یا به محض اینکه ایجاد شدند قسمتی از RefSet می گردند.
مزیت بروزرسانی پویا اینست که اگر سری منابع شامل راه حل هایی با کیفیت پایین تر باشد، این راه حل ها سریعاً جایگزین میگردند و ترکیبات بعدی با راه حل های بهبود داده شده انجام می شوند. اشکال آن هم اینست که بعضی از ترکیبات امیداوارکننده حذف می شوند قبل از اینکه بررسی گردند. اجرای بروزرسانی پویا خیلی پیچیده تر از بروزرسانی ساکن است. همچنین، در بروزرسانی ساکن ترتیبی که ترکیبات اجرا میشوند مهم نیست چون تا همه ترکیبات اجرا نشوند RefSet بروزرسانی نمی گردد. در بروزرسانی پویا، ترتیب اجرای ترکیبات نسبتاً مهم است چون حذف شدن بعضی از ترکیبات را تعیین میکند. بنابراین در حین اجرای بروزرسانی پویای سری منابع، ممکن است ضروری باشد که با ترتیب های مختلف ترکیبات بعنوان قسمتی از تنظیم راهکار آزمایش کنیم.
3.2 ساخت RefSet
ما اکنون راهکار بروزرسانی جدیدی را معرفی میکنیم که زمانی تحریک می گردد که هیچ راه حل آزمایشی جدیدی برای سری منابع پذیرفته می شود. این بروزرسانی مکانیزمی را اضافه میکند که تا حدودی سری منابع را بازسازی میکند، وقتی که روشهای ترکیب و بهبود، راه حل هایی با کیفیت مناسب برای جایگزینی راه حل های منابع جاری را فراهم نمی سازد.
RefSet تا حدودی با بروزرسانی تنوع بازسازی می شود که بصورت زیر عمل میکند و فرض میکند که اندازه سری منابع است. راه حل های از RefSet حذف می گردد. روش ایجاد تنوع با در نظر گرفتن این دوباره آغاز می گردد که هدف آن اینست که راه حل هایی را ایجاد کند که با توجه به راه حل های منابع متنوع می گردد. سپس روش ایجاد تنوع برای ساخت سری P از راه حل های جدید بکار می رود. راه حل در RefSet بترتیب از P با معیار به حداکثر رساندن تنوع انتخاب می گردد، که معمولاً با سنجش فاصله تعریف شده در محتوای مسئله حل شده اجرا می شود. سپس، به حداکثر رساندن تنوع توسط به حداکثر رساندن فاصله حداقل انجام میشود. معیار حداکثر-حداقل – که قسمتی از روش بروزرسانی سری منابع است – با توجه به راه حل های در هنگام انتخاب راه حل اعمال می گردد، و سپس با توجه به راه حل های در هنگام انتخاب راه حل اعمال می گردد، و به همین ترتیب ادامه می یابد.
3.3 ردیف های سری منابع
در سطح پایین تر انجام جستجوهای پراکنده، سری منابع توسط جایگزینی راه حل منابع دارای بدترین مقدار تابع هدف با راه حل آزمایشی جدیدی بروزرسانی می گردد که مقدار تابع هدف بهتری دارد. چون ما همیشه فرض میکنیم گه RefSet ترتیب بندی شده است، بهترین راه حل و بدترین راه حل می باشد. بنابراین وقتی که راه حل آزمایشی جدیدی در نتبجه اجرای روشهای ترکیب و بهبود ایجاد می گردد، مقدار تابع هدف راه حل آزمایشی جدید برای تعیین این مسئله بکار می رود که آیا RefSet نیاز به بروزرسانی دارد یا نه. این مرحله با تعیین این مئسله انجام میشود که با حذف و واردسازی x در موقعیتی که ترتیب مشخص سری منابع را حفظ میکند، چه زمانی x از بهتر است. ما اکنون مکانیزم هایی را بررسی میکنیم که راه حل ها را با استفاده از سنجش های اضافی شایستگی متمایز می سازد که بر مبنای مقدار تابع هدف نیست.
بجای منتظر ماندن تا زمانیکه سری منابع با هم همگرا می گردند (یعنی تا زمانیکه به وضعیتی برسد که هیچ راه حل جدیدی پذیرفته نشود)، یک راهکار بروزرسانی که بصورت پویا تنوع را در جستجو وارد می سازد مورد استفاده قرار گیرد. راهکار بروزرسانی از یک طرح 2 ردیفی استفاده میکند، که ردیف اول از راه حل کیفیت-بالا و از راه حل متنوع تشکیل شده است. بروزرسانی دارای هدف حفظ تنوع تا حد زیادی در سری منابع است، بجای اینکه به آن اجازه دهد تا فقط توسط پذیرفتن راه حل های کیفیت-بالا همگن گردد که در بعضی از کاربردها خیلی با هم مشابه هستند. بنابراین علاوه بر بروزرسانی سری منابع در زمانیکه راه حل های آزمایشی جدید کیفیت-بالا با روشهای ترکیب و بهبود یافته می شوند، سری منابع نیز با راه حل های خیلی متنوع بروزرسانی می گردد.
بروزرسانی خصوصاً از تقسیم بندی منابع به دو زیرمجموعه تشکیل شده است:

زیرمجموعه اول زیرمجموعه کیفیت-بالا و زیرمجموعه دوم زیرمجموعه متنوع نامیده می شود. راه حل ها در مطابق با مقدار تابع خود ترتیب بندی می شوند و سری منابع با هدف افزایش کیفیت با استفاده از معیار طرح جستجوی پراکنده مبنا، بروزرسانی می گردد. بعبارت دیگر، راه حل جدید x در مسئله به حداقل رسانی، جایگزین راه حل منابع می گردد. راه حل ها در مطابق با مقدار تنوع خود ترتیب بندی می شوند و بروزرسانی دارای هدف افزایش تنوع است. بنابراین راه حل جدید x جایگزین راه حل منابع می گردد.
بروزرسانی 2 ردیفی را میتوان در ترکیب با مکانیزم بازسازی مورد استفاده قرار داد. اجرای آن توسط نگه داشتن و آغاز دوباره روش ایجاد تنوع برای بازسایی با راه حل هایی که در بین آنها متنوع است و با توجه به آسان می گردد.
لاگونا و مارتی (2000) توسعه ای از این طرح را پیشنهاد می کنند که لیستی از بهترین ایجاد کننده ها را حفظ میکند. یک ایجاد کننده خوب، یک راه حل منابع است که راه حل های آزمایشی کیفیت-بالا را ایجاد میکند، زمانیکه بعنوان ورودی برای روش ترکیب مورد استفاده قرار می گیرد. بروزرسانی 3 ردیفی از سری منابع اندازه استفاده میکند، که به سه زیرمجموعه زیر تقسیم بندی می شود:

و با استفاده از قوانین یکسانی مانند قوانین بروزرسانی 2 ردیفی، بروزرسانی می گردند. برای بروزرسانی ما مسیر را دنبال میکنیم، که مقدار تابع هدف بهترین راه حلی است که تابحال از ترکیب و هرگونه راه حل دیگر ایجاد شده است. مطابق با به شیوه ایمانند شیوه برای مسئله به حداکثر رسانی، ترتیب بندی می گردد. وقتی که در با راه حل کیفیت بالاتری جایگزین میگردد که بتازگی ایجاد شده است، ما را با مقایسه میکنیم و اگر مناسب باشد آنرا بروزرسانی میکنیم.
این طرح خصوصاً در محیطی سودمند خواهد بود که راه حل های دارای کیفیت نسبتاً پایین قابلیت ایجاد راه حل های کیفیت-بالا، توسط اجازه دادن به این ایجاد کننده های خوب برای مشارکت در ترکیبات دیگر را داشته باشند زمانیکه آنها از جایگزین می گردند. آغاز دوباره و مانند طرخ 2 ردیفی است. با بهترین راه حل ها در P آغاز می گردد که در شامل نبودند.
3.4 کنترل تنوع
جستجوی پراکنده اجازه تکرار را در سری منابع نمی دهد، و روشهای ترکیب آن برای بدست آوردن مزیت از عدم وجود تکرار، طراحی می گردند. درهم سازی اغلب برای کاهش تلاش محاسباتی بررسی راه حل های تکرارشده استفاده می گردد. برای نمونه تابع درهم سازی زیر یک راه مؤثر برای مقایسه راه حل ها و اجتناب از وقوع تکرار است، زمانیکه با مسائلی سر و کار داریم که راه حل های انهارا میتوانیم با تبدیل p و اندازه m نشان دهیم:

کامپوس و همکارانش (2001) مزایای این نوع تکرار را در محتوای یک مسئله ترتیب بندی خطی گزارش میکنند.
در حالیکه کاربردهای جستجوی پراکنده ساده تر برای بررسی این مسئله طراحی می گردند که سری منابع شامل موارد تکراری نیست، آنها عموماً تنوع راه حل های کیفیت-بالا را نشان نمی دهند، زمانیکه RefSet اولیه را ایجاد میکنند. از طرف دیگر، بیاد داشته باشید که این مسئله که راه حل های متنوع تابع یک بررسی تنوع دقیق با معیار حداکثر-حداقل است. تست حداقل تنوع را میتوان برای راه حل های کیفیت-بالای اعمال کرد که بعنوان عضوهایی از RefSet بشرح زیر انتخاب می گردند. پس از اینکه سری P ایجاد شد، بهترین راه حل مطابق با مقدار تابع هدف طوری انتخاب می گردد که در سری منابع به اندازه باشد. سپس، از P حذف می گردد و بهترین راه حل بعدی x در P انتخاب می گردد و به RefSet اضافه می گردد، البیته فقط در صورتی که:

بعبارت دیگر، در هر مرحله ما بهترین راه حل را در P اضافه می سازیم فقط در صورتیکه حداقل فاصله بین راه حل انتخاب شده x و راه حل های موجود در RefSet حداقل به بزرگی مقدار سرحد باشد.
3.5 روش ایجاد زیرمجموعه
روشهای ترکیب راه حل در جستجوی پراکنده معمولاً فقط به ترکیب دو راه حل نیستند، و بنابراین روش ایجاد زیرمجموعه در کلی ترین شکل خود از ایجاد زیرمجموعه هایی با اندازه های مختلف تشکیل می گردد. در روش جستجوی پراکنده فرض می شود که سری راه حل های ترکیب شده ممکن است در تمامیت خود در نقطه ای ایجاد گردند که زیرمجموعه های راه حل های منابع ایجاد می گردند. بنابراین وقتی که یک زیرمجموعه مشخص ایجاد می گردد، هیچ صلاحیتی در ایجاد دوباره آن نیست. اینکار موقعیتی را ایجاد میکند که تا حد زیادی با موقعیت فرض شده در محتوای الگوریتم های ژنتیک متفاوت است، که ترکیبات معمولاً توسط چرخش یک میز رولت تعیین می گردند.
راهکار برای ایجاد زیرمجموعه های راه حل های منابع از یک استراتژی برای توسعه جفت ها در زیرمجموعه هایی با اندازه بزرگرت استفاده میکند درحالیکه تعداد کلی زیرمجموعه هایی که باید ایجاد گردند را کنترل میکند. بعبارت دیگر، این مکانیزم از نوع نهایی فرآیندی اجتناب میکند که همه زیرمجموعه های با اندازه 2 و سپس همه زیرمجموعه های با اندازه 3 را ایجاد میکند، و به همبن ترتیب ادامه می یابد تا اینکه به زیرمجموعه هایی با اندازه b-1 و در نهایت نیز به RefSet کلی برسد. این راهکار مسلماً برای استفاده عملی مناسب نیست، با فرض اینکه 1013 زیرمجموعه در یک سری منابع با اندازه معمول وجود داشته باشد. حتی برای یک سری منبع کوچک تر، ترکیب همه زیرمجموعه های احتمالی مؤثر نخواهد بود چون زیرمجموعه های زیادی تقریباً با هم یکسان خواهند بود. راهکار زیر زیرمجموعه های معرف با اندازه های مختلف را توسط ایجاد انواع زیرمجموعه انتخاب می کند:
- زیرمجموعه نوع 1: همه زیرمجموعه های 2 عنصری.
- زیرمجموعه نوع 2: زیرمجموعه های 3 عنصری گرفته شده از زیرمجموعه های 2 عنصری توسط تقویت هر زیرمجموعه 2 عنصری برای عدم شامل سازی بهترین راه حل در این زیرمجموعه.

 

 

 

فرمت این مقاله به صورت Word و با قابلیت ویرایش میباشد

تعداد صفحات این مقاله  20  صفحه

پس از پرداخت ، میتوانید مقاله را به صورت انلاین دانلود کنید


دانلود با لینک مستقیم


دانلود مقاله اصول جستجوی پراکنده

بررسی انواع واحدهای تولید پراکنده و تاثیرات مفید آنها بر شبکه های توزیع

اختصاصی از فایلکو بررسی انواع واحدهای تولید پراکنده و تاثیرات مفید آنها بر شبکه های توزیع دانلود با لینک مستقیم و پر سرعت .

بررسی انواع واحدهای تولید پراکنده و تاثیرات مفید آنها بر شبکه های توزیع


بررسی انواع واحدهای تولید پراکنده و تاثیرات مفید آنها بر شبکه های توزیع

 

 

 

 

 

چکیده:

تولیدات پراکنده منابع تولید انرژی الکتریکی هستند که به شبکه توزیع متصل می گردند. این منابع در مقایسه با ژنراتورهای بزرگ و نیروگاهها، حجم و ظرفیت تولید کمتری داشته و با هزینه پایین تری راه اندازی می شوند. اتصال این تولیدات به شبکه های توزیع منافع و سودمندی های زیادی به دنبال دارد.در این سمینار به بررسی تاثیرات مفید تولیدات پراکنده بر قابلیت اطمینان شبکه های توزیع پرداخته شده است.و نتایج ارزیابی قابلیت اطمینان شبکه های توزیع در قالب شاخص های نقاط بار و کل سیستم مورد بررسی قرار گرفته است.در این سمینار به بررسی تأثیر مکان واحدهای تولید پراکنده تأثیر تعداد واحدهای تولید پراکنده تأثیر ظرفیت واحدهای تولید پراکنده و تأثیر احتمال عدم دسترسی به واحدهای تولید پراکنده بر روی یک سیستم نمونه پرداخته شدو مشاهده گردید که همواره، قرار گیری صحیح با ظرفیت و تعداد مناسب از منابع تولید پراکنده افزایش قابل ملاحظه ای در میزان قابلیت اطمینان سیستم های توزیع خواهد داشت .

مقدمه:

امروزه با تغییر و پیشرفت روز افزون در صنعت بـرق شـاهد بـروز تحـولات عمـده ای هـستیم کـه تحـت عنوان کلی تجدید ساختارصنعت برق مطرح می گردند، انقلابی که آهسته آهسته روش ارتبـاط مـا را بـا بازار انرژی تغییر می دهـد . بخـشی از ایـن تحـول اجتنـاب ناپـذیر کـه در بخـش تو لیـد تـوان انجـام مـی شودتکنولوژی تولید پراکنده است[1] . تولیدات پراکنده منابع تولید انرژی الکتریکی هستند که به شبکه توزیع متصل می گردند. این منابع در مقایسه با ژنراتورهای بزرگ و نیروگاهها، حجم و ظرفیت تولید کمتری داشته و با هزینه پایین تری راه اندازی می شوند. همچنین اتصال این تولیدات به شبکه های توزیع منافع و سودمندی های زیادی به دنبال دارد. از جمله مواردی که استفاده از واحدهای تولید پراکنده را مورد توجه قرار می دهد می توان به مسائلی نظیر مسائل اقتصادی در توسعه نیروگاهها، کاهش آلودگی محیط زیست، بالا بردن بازدهی این منابع در تولید برق، بالا بردن کیفیت برق رسانی به مشتریان، کاهش تلفات در شبکه های توزیع، بهبود پروفیل ولتاژ، آزاد سازی ظرفیت شبکه و بسیاری از موارد دیگر اشاره نمود.

تعداد صفحه :76


دانلود با لینک مستقیم


بررسی انواع واحدهای تولید پراکنده و تاثیرات مفید آنها بر شبکه های توزیع