فایلکو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

فایلکو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

سیستم‌های اطلاعاتی - 26اسلاید

اختصاصی از فایلکو سیستم‌های اطلاعاتی - 26اسلاید دانلود با لینک مستقیم و پر سرعت .
این سیستم‌های اطلاعاتی مبتنی بر رایانه ( CBIS ) می‌باشند.
سیستم پردازش تراکنش (TPS )
سیستم کارگران دانش (KWS )
سیستم اطلاعاتی مدیریت ( MIS )
سیستم تصمیم یار ( DSS )
سیستم اطلاعات اجرایی (EIS )
سیستم اطلاعات حسابرسی ( AIS )
سیستم اطلاعات راهبردی (SIS )
برنامه ریزی منابع سازمانی (ERP )


دانلود با لینک مستقیم


سیستم‌های اطلاعاتی - 26اسلاید

دانلود مقاله سیستم‌های جابجایی هوا

اختصاصی از فایلکو دانلود مقاله سیستم‌های جابجایی هوا دانلود با لینک مستقیم و پر سرعت .

 

 

 


سیستم جابجایی هوا
تا نیمه دهه 1960 توجه کمی به نیازجابجایی هوا در سیستم‌های تهویه صنعتی شده بود. سیستم‌های خروجی با کیفیت بالا بوسیله‌ی سرویسهای مهندسی‌ای طراحی شده بودند که گهگاهی و یا به طور اتفاقی جابجایی هوا را از محیط کار طراحی می‌کردند. اما به طور معمول یک پیمان‌کار معمولی یک سیستم خروجی را بدون درنظر گرفتن سیستم جابجایی هوا نصب می‌کرد. بسیاری از مشکلات به حساب نیامده در اجرا و انجام سیستم‌های خروجی تهویه در گذشته به فقدان جابجایی مناسب هوا نسبت داده شده است.
این مشکلات کهنه و قدیمی برای تولید افزایش سوددهی در دهه 1960 شروع شدند، زمانی که یک مقداری از مکانها و آژانسهای محلی تقاضای سیستم‌های جابجایی هوا را برای ارتباط با سیستم‌های جدید خروجی کردند. قابل فهم نبود که حتی بدون یک سیستم جابجایی هوا، هوا می‌تواند بوسیله‌ی نفوذ و گرما به درون ساختمان کشیده شود، قبل از اینکه خارج شود.
سیستم‌های جابجایی هوایی که خوب طراحی شده بودند مقدار بیشتری هوای گرم را نسبت به طریقه معمول تهیه می‌کردند. (شکل 1-12)

 

حتی طراحان وظیفه شناس ضرورت ایجاد جابجایی هوا و قابل دسترس ساختن یک تنوعی از واحدهای پکیج شده برپایه ورودی هود، فیلتر، فن و مدلهای گرمایی و سرمایی و شبکه‌های خروجی که برای نصب این سیستم‌ها به طور تکنیکی و اقتصادی قابل توجه ساخته شده بودند، پذیرفتند بعلاوه هزینه بالا از حالت خروج هوا در نیمکره شمالی تشویق کرده است معمول کردن طراحی برای اینکه گرما را از جریانهای بزرگ خروجی بازیافت کند.
ریسر کوله‌ کردن جریانهای خروجی بعد از اینکه هوا به طور مناسب پاک شد در یک حد محدود عمل می‌کند. این فصل در مورد 3 تا از این خروجی‌ها بحث خواهد کرد، با تاکید بر روی خروجی پایه از جابجایی اولیه هوا در نصب بازیافت گرما و چرخش هوا از جریان خروجی در این فصل ما از یک مطالعه موردی در مورد کارخانه‌ی ذوب فولاد در شمال نیویورک که یک نقصی در مورد جابجایی هوا دارد استفاده شده و شرح داده شده که چطور طراح اول باید کیمت هوای جابجا شده‌ی مورد نیاز راحساب کند برای تعادل جریان خروجی و سپس روشها را برای تعیین محل واحد جابجایی هوا جایی که تماس کارگر را برای تماس با هوای آلوده را کاهش بدهد بررسی کند.
برای حل این مشکل و دیگر صنایع سنگین یک سیستم تولید هوا در طول فصل زمستان و پاییز تهیه می‌کنند. شکل 1-12: سیستم‌های جابجایی هوا (RAS- A and RAS- B) B, A شامل واحدهای پایه و مجراهای توزیع هستند. در هردوحالت واحدها بوسیله‌ی خروجی‌هایی که در سطح زیرزمینی قراردارند ترقی داده شده‌اند. در RAS- A مجرای توزیع موقعیتش در امتداد محیط ساختمان با 3 انشعاب مجراهای نفوذی که در کنار دیوار با یک دیفیوزر در کناره‌ی ساختمان خاتمه پیدا می‌کند. یک دیوار نفوذی مجزا از واحد در RAS- B به یک توزیع چند برابر هدایت می‌کن بر روی یک دیوار کناری با یک سری دیفیوزرهای که سرعت پایین هوا را در ارتفاع کاری تولید می‌کنند.
در بعضی حالتها جایی که موقعیت اجازه می‌دهد واحدهای جابجایی هوا در صنایع سنگین ممکن است شامل یک سردکننده تبخیر کننده برای موقعیتهای تابستان باشد.
در صنایع با تکنولوژی بالا و در تحقیقات و آزمایشگاههای ساده جایی که سیستم‌های صحیح HVAC تجهیزات انتخابی را بر پایه‌ی ASHRAE 2000 مشخص می‌کنند.

 

1-12 انواع واحدهای جابجا کننده هوا
همانطور که در بالا اشاره شد یک تنوعی از گرم‌کننده‌ها، تهویه‌ها و سیستم‌های HVAC در ASHRAE 2000 توصیف شده است که می‌تواند به عنوان واحدهای جابجا کننده‌ی هوا استفاده شود. این سیستم‌های پکیج‌شده قابل دسترس هستند برای: 1- برای استفاده با آب گرم یا بخار 2- به عنوان سیستم‌های غیر مستقیم سوخته شده بوسیله‌ی گاز یا روغن با منفذی از تولیدات احتراق در خارج 3- به عنوان واحدهای مستقیم سوزاندن گاز ازنوع استفاده شده در مثال کارخانه‌ی ذوب فلز که در این فصل آشنا شدید.
به طور قراردادی واحدهای جابجایی هوا آب داغ و بخار به عنوان واحدهای پکیج‌شده قابل دسترس هستند و یا می‌توانند ترکیباتی را در آن مکان جمع‌آوری کنند برای اینکه جریان خاص مورد نیاز را بدست آورند. واحدهای بخار احتیاج دارند به سرویس نیروگاه مهم و اغلب برای تاسیسات بزرگتر معمول هستند. واحدهای آب داغ تقریباً در سیستم‌های کوچک استفاده می‌شوند. واحد جابجایی هوای پکیج‌شده بوسیله‌‌‌ی گاز یا روغن با یک بخش مبادله گرما که برای سیستم‌های متوسط و بزرگ استفاده می‌شود که اقتصادی و قابل انعطاف هستند.
این طرح کارایی بالا را عرضه می‌کند و هنگامی که تولیدات احتراق به محیط خارج نفوذ می‌کنند، برای همه‌‌ی کاربردهایش سالم درنظر گرفته شده است.
جایی که گاز نسبتاً ارزان می‌باشد، به طور مستقیم واحدهای سوزاندن گاز برای سیستم‌های بزرگتر از 10000cfm مناسب هستند. این واحدها با کنترل‌های احتراق وسیع برای بهینه‌سازی بازده احتراق برای دستیابی به انتشار مجاز تولیدات احتراق به مکان تهویه شده طراحی شده‌اند. ریسر کوله‌کردن هوای محیط کار از منطقه احتراق از فساد تدریجی گرمایی محصولات، هوای آلوده‌ی صنایع خاصی از قبیل حلالهای کلرینه شده که ممکن است به طور جدی برای سلامتی خطرناک باشند جلوگیری می‌کند. مستقیماً واحدهای سوزاندن گاز از قبل برای سهولت تحویل دادن گاز و تاسیسات در محل پکیج شده‌اند. به طول معمول نوع مدلهای موازی برای بالا بردن مقاومت مجرا در حدود قابل استفاده هستند. مدلهای سانتریفیوژ برای بالابردن مقاومت بیرونی یا خارجی در حدود مناسب هستند.
شکل 2-12 واحدهای جابجایی گاز سوزانده شده (RAUS).
واحد غیرمستقیم سوزاندن به یک حوضچه احتراق و مبدل حرارتی مجهز شده‌است. بنابراین جابجایی بخار هوا و پروسه احتراق گاز جدا هستند. این واحدها به یک دمپرزهای ریسرکوله‌ شده مجهز هستند. تولیدات از واحد احتراق گاز به طور مستقیم به محیط کار خارج می‌شوند. بر طبق این متن اگر هوا در محل کار به چرخش درآید آن می‌بایست جریان پایین‌تر از احتراق را واردکند. از جهت دیگر هوای ناپایدار آلوده در اثر سوختن تجزیه حرارتی می‌شود و به فضا وارد می‌شود. واحدهای جابجایی هوای سوخته شده به طور مستقیم با کنترلهای استادانه که یک اپراتوری سالم را بوجود آورده است، مجهز شده‌اند.

 

2-12 ضرورت جابجایی هوا
امروزه توافق‌نامه‌هایی برای ورود و خروج هوا وجود دارد، وقتی که هوا از محل کار خارج می‌شود باید هوایی جایگزین آن شود، این تعادل ساده نیازمند تغییر و گزارش می‌باشد. اگر یک مغازه آبکاری و پرداخت نقره با خروجی کلی 100000cfm اضافه از یک. مقدار کمی احتیاجات 2000cfm اضافی از خروجی نباید به طوری فوری از سیستم جابجایی هوا (RAS)‌ بالابرده شود. در عمل، یک سیستم جابجایی هوا نمی‌‌تواند تا وقتی که از حالت تعادل بیش از 10% خارج شده است ترفیع داده شود. راه دیگر ارزیابی ضرورت یک سیستم جابجایی هوا مقایسه حجم اتاق در برابر میزان هوای خروجی مورد نیاز می‌باشد. حالتی که اثبات شده نشان می‌دهد که جابجایی هوا زمانی که حجم خروجی ساعتی از 3 برابر حجم ساختمان تجاوز کند ضروری می‌باشد، هیچ توجیهی برای دسترسی به این حقیقت بدست نیامده است. اگر در تاسیساتی مثل چاپگر رنگ جدید در یک اتاق با حجم 10000 فوت مکعب به خروجی‌ای در حدود 1000cfm که یک RAS مجزا یا استفاده از یک شاخه‌ی تولیدی 1000cfm از یک سیستم موجود را تضمین می‌کند.
در یک کارخانه بزرگ ذوب فولاد در مطالعه موردی ما تهویه خروجی کلی در حدود 232800cfm بدون جابجایی هوا می‌باشد.
شکایتهایی بوسیله‌ی مدیرانی که به‌طور ثابت در آنجاهستند درمورد نقص قابل توجهی از جابجایی هوا دریافت شد. به همین منظور هوای مجزای باقی‌مانده در ساختمان، هوای خارج است که از تمام درزها و شکافها و قسمتهای باز به درون کشیده می‌شود. کارگرها در قسمتهای ایزوله شده که با دیوارهایی برای در امان ماندن از اغتشاشات هوا و یا هوای سرد زمستان قرار می‌گیرند.
بعضی مشکلات از توجه به فشار منفی در حدود شروع شد. خیلی مشکل است بازکردن درها و پنجره‌ها وقتی فشار منفی از تجاوز کند. کارگرها به وضوح از بسته‌شدن شدید درها می‌گریزند.
به خاطر فقدان جابجایی هوا در این ساختمان، یک فن خروجی معمولی استاتیکی به طور معمول در سقف قرارداده می‌شود که فشار منفی‌ای در حدود تولید می‌کند. این موقعیت سبب برگشت از دودکش واحدگرم‌کننده و آونها می‌شود و باعث آلوده شدن محیط کار بوسیله‌ی منوکسید کربن می‌شود.
در سطوح اجرایی از این فشار استاتیکی پایین، حجم محوری بالای تهویه کننده‌ها باعث شده است که بوسیله‌‌ی عملکرد فن‌های استاتیکی بزرگ که در سیستم‌های محلی استفاده شده است، به طور مخالف تاثیر بپذیرد.
این 4 فن درکارخانه ذوب فلز در این مورد نرخ جریانی در حدود 18000cfm دریک فشار استاتیکی دارد. به خاطر کمبود هوای موجود باعث فشار منفی در حدود می‌شود. جریان واقعی خروجی از سقف در حدود 5-10% می‌باشد.
شکل 3-12 شمایی از ساختمان کارخانه را به طور کامل با موقعیتهای تقریبی و نرخ‌های جریان از سیستم‌های خروجی در 4 محل مهم ساختمان که در جدول 2-12 توصیف شده است، را نشان می‌دهد.

 

3-12 کمیت جابجایی هوا
مرحله اول مهم در طرحی یک RAS انتخاب جریان تولیدی می‌باشد. راه نزدیک شدن به این انتخاب این است که فرض کنیم تولید باید برابر خروج باشد. در عمل طراحی یک تعادل بین تولید و خروج و اجرای آن برای تولید فشارهای مختلف بین مناطق کاری مهم برای پایداری یا جریان هوا از یک منطقه به منطقه دیگر ضروی می‌باشد. در مثال کارخانه‌ ذوب فلز (شکل 3-12) هوا باید از منطقه کاری به سمت منطقه اشتعال جریان پیدا کند برای اطمینان از اینکه غلظت بالایی از فیومهای فلزی دیگر قسمتهای کارخانه را آلوده نکند. دراین حالت جابجایی برای اشتعال کمپلکس قوس الکتریکی باید کمتر از Furance خروجی باشد، بنابراین تولید یک مقدار ناچیز هوای باقیمانده در این محل از کارخانه جایی که کوره‌ها قرارداده شده‌اند. به طور معمول قابل ملاحظه است اینکه جریان ورودی با جریان خروجی هماهنگ باشد. اگرچه نرخ تولید 90-110% ظرفیت خروجی هستب به نرمال در عمل به عنوان مرزهای طراحی برای سیستم‌های جابجایی هوا استفاده می‌شود.
تعیین نرخ RAS برای یک صنعت خانگی به چند روش انجام می‌شود. در تعدادی از این روشها برای تاسیسات کوچک ممکن است عدم کارایی زیادی بوجود آید. در یک روز با باد کم در ساختمان می‌تواند باز باشد، در صورتیکه محل ساختمان و سیستم خروجی و RAS موجود اپراتوری شوند.
اگر ساختمان به طور مناسب کیپ باشد و یک کمبود هوا وجود داشته باشد، باعث بوجود آمدن جریان هوا از میان درهای باز می‌شود. اگر متوسط سرعت ورودی از میان درها اندازه‌گیری شده باشد، تولید سرعت و سطح باز در کمبود هوا را نشان می‌دهد. حتی در زیر موقعیت‌ ایده‌ال این رویه شاید فقط 30% از مقداری که بوسیله‌ی روشهای صحیح که دمش را توصیف می‌کند نشان می‌دهد.
در مورد کارخانه‌ی ذوب فولاد این داده‌ها در دفتر مهندسی برای همه‌ی سیستم‌ها قابل دسترس بودند. انتظار می‌رفت که یک تفاوتی را با چیزی که در جدول 12-1 چاپ شده است را نشان می‌دهد. اپراتوری شیفتها و زمان برای همه‌ی خروجی‌های اصلی برای اینکه یک سیستم جابجایی مناسب بوجود آید، در نظر گرفته شدند. هیچ سیستم جابجایی هوایی در زمان بازدید نصب نشده بود. ما خوش‌شانس بودیم که در این حالت داده‌های مهندسی قابل دسترس بودند. به هرحال در یک کارخانه‌ی کوچک بدون سیستم مهندسی جزییات به ندرت قابل دسترس هستند.
اگر داده‌های مهندسی قابل دسترس نبودند، یک استانداردهای توافق شده خروجی برای طراحی سیستم تهویه صنایع قابل کاربرد است. به هرحال اگر این داده‌ها قابل دسترس نبودند از جدول مرجع 12-2 می‌توانید استفاده کنید. بهترین راه برای تعیین چگونگی جابجایی هوا به محاسبه‌ی مقدار هوایی که به طورمعمول از کارخانه خارج می‌شود دارد که بوسیله‌ی اندازه‌گیری‌های مستقیم سیستم خروجی مورد استفاده در فصل 3 توصیف شده است. هنگامی ساختمانها ممکن است کمبود هوا پیدا کنند که نرخ خروجی مشاهده شده کمتر از نرخ طراحی باشد اگر فن‌های خروجی فشار پایین به طور وسیع استفاده شوند. برای کمینه کردن این محصول مصنوعی، اگر هوا نفوذ کرد، درها و پنجره‌ها باید قبلاز اندازه‌گیری بازشده باشند. اندازه‌گیری از سیستم اصلی و خروجی‌ها با استفاده از لوله پیتوت استاتیکی صورت گرفته که نتایج عالی را دربر دارد.
اگرچه Face velocity و فشار استاتیکی هود اندازه‌گیری شده معمولاً برای ارزیابی کافی هستند. یک مشکل که مکرراً در تاسیس وسایل خروجی بوجود می‌آید، مشکل در اندازه‌گیری هوای خروجی از فن‌های استاتیکی موازی که به طور معمول به عنوان خروجی‌های سقفی استفاده می‌شود که منجر به عدم دسترسی آنها می‌شود، می‌باشد. مکرراً ضروری است که سازنده‌ها داده‌های اجرایی را برای تخمین خروجی فن‌ها استفاده کنند.
در مثال کارخانه ذوب فلز، اندازه‌گیری جریان واقعی بوسیله‌ی مولفهایی که برای تولید یک وسیله‌ی خروجی جریان در ستون (As measured) در جدول 1-12 کامل شد. اگر یک مقایسه داده‌ها در جدول1-12 بین داده‌هایی که مهندسان ارایه کرده‌اند و داده‌هایی که به طور مستقیم اندازه‌گیری شده‌اند، انجام شود،‌ اهمیت تاسیس ظرفیت مورد نیاز واحدهای جابجایی هوا بوسیله‌ی اندازه‌گیری مستقیم مورد توجه قرار می‌گیرد.

 

4-12 خروج جریان از جابجایی هوا
قوانین عمومی نفوذ هوا به داخل محیط کار: 1- هوا باید به محل فعالیت کارگران در کمتر از 8-10 ft از بالای سقف وارد شود. 2- سرعت آن در حدود کمتر از 200 fpm باشد 3- جابجایی هوا باید در یک راهی خارج شود که چرخه‌گرما را که در شکل 4-12 نشان داده شده است را نشان دهد. 4- سیستم جابجایی هوا باید هوای تمیز را به بیشترین سطح کارخانه برساند. در عمل اغلب مشکل است که خروجی ژئومتری مورد نظر برای جابجایی هوا بدست آوریم. در یک روش ساده‌ی جدید موقعیت لوله توزیع و شبکه‌ی خروجی برای بدست آوردن الگوی خوب خروجی بوسیله‌ی همکاری بین مهندس و معمار به سادگی امکان‌پذیر شده است.
در همه‌ی حالتها مهندس تهویه باید نرخ کلی خروجی‌،‌ موقعیت هودهای خروجی‌ای که به عنوان یک سیستم عمل می‌کنند و همچنین زمان استفاده‌ی هرکدام را پیش‌بینی کند.
به طور مکرر امکان آن هست که یک RAS را به یک سیستم‌های خروجی خاص،‌ ارتباط واحد جابجایی هوا با فن‌های خروجی در آن سیستم و همچنین بکاربردن به عنوان سیستم‌های کامل خروجی نسبت دهیم. که باعث به حداقل رساندن پوشش اولیه برای اتصالات و هزینه‌های اپراتوری بعدی می‌شود. در یک سیستم جدید طراح می‌تواند یک RAS را شناسایی کند که در‌آن سیر جریان هوای ورودی و شبکه‌ خروجی کاملاً معین است و جریان هوا بوسیله‌ی مانع فیزیکی یا الگوهای سمی حرکتهای هوا و درها بازداشته نمی‌شود. همانطور که در بالا گفته شد هوای جابجا شده باید از سطح اشغال‌شده‌ی فعال خارج شود نه از سطح بالای ساختمان.
این امکان وجود دارد که انتخاب و موقعیت شبکه خروجی طوری صورت بگیرد که حداقل نفوذ بر روی کارگران در زمستان را بوجود آورد و همچنین باعث نفوذ هوای سرد در تابستان شود.
واحدهای جابجایی هوا به طور مکرر لوله‌های بزرگی را از بخشهای خاص عبور می‌دهند که برای تعیین فضای مورد نیاز برای لوله احتیاج به همکاری با معمار می‌باشد،‌ مخصوصاً زمانی که معمار برای استفاده فضای با ارزش ورودی برای این هدف بی‌میل است. لوله‌های RAS معمولاً‌ محل آنها در خارج از واحد با انشعابهای خروجی نفوذکننده می‌باشد. (در شکل 1-12 نشان داده شده است.)
استقرار 50000-100000cfm جابجایی واحدهای هوا به علت اندازه‌ی بزرگ و احتیاجات پایه‌ای که دارند مشکل است اگر امکان دارد بالابردن موقعیت واحدها از سطح زمین یا یک دیوار خارجی ساختمان با براکت عمل خوبی است. این عمل اجازه می‌دهد که از یک سیستم توزیع چند برابر با افت فشار پایین استفاده کند. در این حالت هزینه‌ها نسبتاً پایین هستند و مطلوبیت این واحدها نگهداری آنها را تشویق می‌کند.
در آب هوای سرد شمالی این لوله‌ها باید ایزوله شود. درحالتی که دسترسی فضا در یک خروجی دیوار محدود است، موقعیت سقفی از واحد جابجایی هوا ممکن است ضروری باشد. تاسیسات سقفی به حمل کردن به سمت‌بالا، نافذهای سقفی برای خدمات الکتریکی و سوختی و همچنین منفذهایی برای لوله‌های خروجی هوا احتیاج دارد.
شکل 4-12 وقتی که هوای جابجا شده گرم می‌شود توسط عبور هوا از بالای پروسه‌های گرما‌زا شروع می‌شود. به علت تفاوت دانسیته، جریانهای هوای جابجا شده از بالای ساختمان مکرراً به طور مستقیم یک چرخه‌ی کوتاه به سمت خروجی‌های سقفی ایجاد می‌کند.
در موقعیت‌های بلند برای واحدهای جابجایی هوا که درکناره‌های ساختمان هستند می‌توان بوسیله‌ی جرثقیل قرارگیرند. ساختمانهای بلند با موقعیتهای سیستم‌های جابجایی هوا در مرکز ممکن است برای بلندکردن به هلیکوپتر احتیاج داشته‌باشند. به طور نمونه استقرار یک سیستم جابجایی هوا برای ایجاد سهولت زیاد درکارخانه ذوب فلز بسیاری از مشکلاتی که در ساختمان‌های جدید دیده می‌شود را نشان داد.
همانطور که گفته شده حجم هوای واحدهای جابجایی هوای کارخانه ممکن است براساس داده‌‌های مهندسین و یا اندازه‌گیری دقیق بدست آید. داده‌های مهندسی اطلاعات نسبتاً صحیح را تولید می‌کند. اندازه‌گیری دقیق جریان برای تعیین حجم جریان خروجی و تجهیزات سیستم جابجایی هوا ترجیح داده می‌شود.
بدیهی است جریان خروجی سیستم‌های جابجایی هوا باید برای تعیین کارایی سیستم جابجایی هوا اندازه‌گیری شود.
هرنوع آلودگی به یک سیستم خروجی مخصوص، اپراتوری مخصوص، پارامترهای طراحی مخصوص شامل سرعت در جریان لوله و نوع سیستم تصفیه‌ی هوای خاص احتیاج دارد. به عنوان مثال برای اپراتوری Sand handling به یک سیستم خروجی محلی با یک سرعت حداقل جریان در حدود 4500 fpm و سیستم تصفیه هوا برای جداکردن ذرات طراحی شده است.
در همه اپراتوری‌ها هودها باهم گروه‌بندی خواهند شد و بوسیله‌ی یک فن خروجی عمل می‌کنند. سیستم‌های تهویه‌ بوسیله‌ی عملکردشان گروه‌بندی می‌شوند (به طور مثال ذوب، مدول سازی حمل شن، خمیر کردن،‌ لرزاندن) دریک کارخانه با تولید بالا اپراتوری مداوم صورت می‌گیرد، به عنوان مثال کارخانه ذوب فلز در طول دوره‌ی خاصی در 3 شیفت کاری انجام می‌شود (جدول 1-12).
این امکان وجود دارد که سیستم خروجی را با واحدهای جابجایی هوای منفرد جفت کنیم و واحدها و فن‌های خروجی را برای حفظ و ذخیره‌ انرژی و اطمینان از ذخیره هوا در طول اپراتوری نشان دهیم. در این حالت بهترین روش جفت کردن یک به یک (One- on- one coupling) از RAS و سیستم‌های اصلی خروجی، اگر فن خروجی به طور اتوماتیک روشن شود، می‌باشد. اگر 2 سیستم خروجی سمی تقریباً جریان خروجی مشابهی داشته‌باشند دریک قسمت مشابه از کارخانه قرار نمی‌گیرند و ممکن است از یک RAS با یک شبکه خروجی منفرد برای نگهداری سیستم استفاده کند. اگر محلهای خروجی برای یک سیستم توزیع مناسب نباشند، سپس دو سیستم لوله‌ی توزیع متناوب با نافذهای دمپرز اتوماتیک برای سیستم توزیع مناسب در سیستم خروجی می‌تواند طراحی شود.
ساختمانهای صنایع در حدود بیشتر از ده سال گسترش یافته است و در نتیجه باعث بوجود آمدن تعداد بیشماری از ساختارهای سقفی و دیواری شده است. در بعضی حالتها پیدا کردن یک محل مناسب برای واحدهای جابجایی هوا خیلی مشکل می‌باشد. واحدها باید در مکان بسته‌ای برای تولید هوای اپتیمم، از هزینه‌های بالای تجهیزات انتخاب شود. به علاوه، محلهای بلند برای استقرار واحدهای جابجایی هوا به منظور به حداقل رساندن احتمال ورود مجدد هوای آلوده از دودکشهای خروجی باید انتخاب شود. محلهای ایده‌آل به ندرت پیدا می‌شوند و معمولاً به مصالحه و سازش نیاز دارند. راه حل انتخابی برای تعیین محل 4 واحد جابجایی هوا (RAUS) درکارخانه بعد از بحثهای طولانی با مهندسین و اپراتورها تعیین شد. ظرفیت واحد سوزاندن گاز برای خروجی به محل به طور مستقیم براساس داده‌‌های جدول 1-12 بدست آمده است.
شکل 5-12 سیستم جابجایی هوای یک (RAS-1) برای سطح کوره‌ی ذوب. هودهای خروجی ) (53800 cfm , 2500بر روی کوره‌های الکتریکی در زیر سقف با فاصله‌ی کمی از آن قرارگرفته‌اند. هوای جابجا شده از غرب به سمت شرق جلوی سطح کوره حرکت می‌کند.
1-4-12 سیستم جابجایی هوای یک (RAS-1) ، کوره‌های ذوب دو آرک الکتریکی بزرگ ظرفیت ذوب را برای این کارخانه تولید می‌کنند. برای کنترل فیوم‌های اکسیدآهن خارج شده، کوره‌ها با هودهای محصور شده و یک تمیز کننده‌ی هوا با یک خروجی کلی 53800cfm تولید شده است. هنگامی که جابجایی هوا نمی‌‌تواند بوجود آید، مهمترین مسیر جریان جابجایی هوای تصفیه شده از کف محل ریخته‌گری صورت می‌گیرد. در این قالب‌گیری طراح تهویه خوش‌شانس است زمانی که فضای کافی در انتهای غربی ساختمان برای بالابردن یک RAU منفرد 50000cfm با فن خروجی کوره مرتبط قابل دسترس است. این واحد بزرگ بر روی یک ساختار فولادی بالا برده شده است که هو را به ‌طورمستقیم از مهمترین دیواره خروجی خارج می‌سازد. هنگامی که کوره‌ها 120ft از نقطه‌ی خروجی فاصله دارند، یک Plenum و یک شبکه خروجی در بالای دیوار قرار گرفته که یک توزیع مناسب جریان هوا را به سمت هودهای خروجی بدون مانع اصلی را بوجود می‌آورد. سرعت مینیمم باقیمانده در سطح کوره در حدود 200fpm می‌باشد.

 

فرمت این مقاله به صورت Word و با قابلیت ویرایش میباشد

تعداد صفحات این مقاله    19صفحه

پس از پرداخت ، میتوانید مقاله را به صورت انلاین دانلود کنید


دانلود با لینک مستقیم


دانلود مقاله سیستم‌های جابجایی هوا

دانلود مقاله حل مساله بار 1-0 چند بعدی توسط سیستم‌های P

اختصاصی از فایلکو دانلود مقاله حل مساله بار 1-0 چند بعدی توسط سیستم‌های P دانلود با لینک مستقیم و پر سرعت .

 

 

 حل مساله بار 1-0 چند بعدی توسط سیستم‌های P به همراه ورودی و غشاء فعال
خلاصه:
سیستم‌های غشایی از نظر زیستی مدل‌های تئوری محاسبه همسو و توزیع شده را فعال می‌کند. در این مقاله الگوریتم غشایی را نشان می‌دهیم تا به کمک آن مساله بار 1-0 چند بعدی را در زمانی خطی توسط سیستم‌های شناسنده P به همراه ورودی غشاهای فعال که از دو قسمت استفاده می‌کند، حل کند. این الگوریتم را می‌توان اصلاح کرد و از آن برای حل مساله برنامه‌نویسی عدد صحیح 1-0 عمومی استفاده کرد.
مقدمه:
سیستم‌های P، طبقه‌ای از ابزار محاسله همسوی توزیع شده یک نوع بیوشیمی هستند که در [4] معرفی شد و می‌توان آن را به عنوان معماری محاسبه کلی دانست که انواع مختلف اشیاء در آن قسمت توسط عملکردهای مختلف پردازش می‌شوند. از این دیدگاه مطرح می‌شود که پردازش‌های خاصی که در ساختار پیچیده موجودات زنده صورت می‌گیرد، به صورت محاسباتی درنظر گرفته می‌شوند.
از زمانی که Gh, Paun آن را مطرح کرد، دانشمندان کامپیوتر و بیولوژیست‌ها این زمینه را با نقطه نظرهای مختلف خود غنی‌سازی کرده‌اند. برای انگیزه و جزئیات توضیحات مربوط به مدل‌های متفاوت سیستم P لطفاً به [6/4] توجه کنید. تقسیم‌بندی غشایی (الهام شده از تقسیمات سلولی گفته شده در بیولوژی)، تنها راهی است که برای بدست آوردن فضای کاری ---- در زمان خطی بیشتر و بر اساس حل مسائل مشکل (عموماً مسائل تکمیل شده VP) در زمان چند جمله‌ای (اغلب به صورت خطی) بررسی شده است. جزئیات را می‌توان در [4.6.8] ببینید.
اخیراً مسائل کامل PSPACE به این روش مطرح شدند. در گفتگویی غیررسمی، در سیستم‌های P به همراه غشاء فعال می‌توانیم از 6 نوع قانون استفاده کنیم:
1. قوانین بازگشت چندگانه؛
2. قوانین مربوط به حل معرفی اشیاء در غشاءها؛
3. قوانین مربوط به ارسال اشیاء به بیرون از غشاء؛
4. قوانین مربطو به حل غشاء؛
5. قوانین مربوط به تقسیم غشاء اولیه؛
6. قوانین مربوط به تقسیم غشاء ثانویه.
در [10] Perez-Jimenez، مساله قابل راضی کننده‌ای را در زمان خطی با توجه به تعداد متغیرها و شروط فرمول‌گزاره‌ای توسط سیستم تشخیص دهنده P به همراه ورودی و به همراه غشاء فعال 2 قسمتی حل می‌کند. مساله قابل راضی شدن hard NP نیست، چون الگوریتم‌های تقریبی چند جمله‌ای وجود دارد که آن را حل می‌کند و این نمونه‌ای برای مساله بار 1-0 چند جمله‌ای به حساب نمی‌آید. در این مقاله به حل مساله بار 1-0 چند بعدی توسط سیستم P توجه کردیم.
مساله اصلی تکمیل NP می‌باشد و همچنین مساله بار 1-0 چندبعدی به درجه مساله تکمیل NP بستگی دارد. بنابراین این مساله در زمان چندجمله‌ای توسط سیستم‌های P با ورودی و با غشاء فعال که از تقسیم 2 استفاده می‌کند، حل خواهد شد. می‌توانیم این نوع محلول را با کمک کاهش مساله بار 1-0 چندبعدی برای مساله راضی شدن بدست آوریم تا آن سیستم P را که به حل مساله راضی شدن در زمان خطی می‌پردازیم، بکار بریم. همچنان این مساله قابل بحث است که چگونه می‌توان مساله NP را به مساله تکمیل شده NP دیگر بوسیله سیستم P ساده کرد.
در این مقاله مستقیماً الگوریتم غشایی را برای حل مساله بار 1-0 چندبعدی در زمان خطی توسط سیستم تشخیص دهنده P به همراه ورودی به همراه غشاء فعال که از تقسیم 2 استفاده می‌کند، ارائه می‌دهیم.در اینجا به طرحی از یک محدوده سیستم P توجه می‌کنیم که مساله بار 1-0 چندبعدی را حل می‌کند (نه به شکل بررسی رسمی الگورینتم غشایی)‌. همانطور که در بخش 4 گفته شد، استفاده از این الگوریتم اصلاح شده برای حل مساله برنامه‌نویسی عدد صحیح 1-0 کلی، کار آسانی است.
سیستم‌های P در الگوریتم در [5] تقریباً به طور یکسان به شکلی ساخته می‌شوند که برای هر نمونه از مساله قابل راضی شدن، یک سیستم P شکل می‌گیرد. در الگوریتم ما مربوط به مساله 0-1 چندبعدی، سیستم‌های P به طور یکسان شکل می‌گیرند. برای همه نمونه‌هایی که یک اندازه هستند، یک سیستم P طراحی می‌شود.
الگوریتم مربوط به مساله قابل راضی شدن در [5] از سیستم P با قوانین نوع (a)، (f)-(c) استفاده می‌کند و الگوریتم برای مساله راضی شدن در ‍]6] از سیستم‌های P با قوانین نوع (c)-(a) و (e) استفاده می‌کند. در اینجا برای حل مساله بار 1-0 چندبعدی از سیستم‌های P محدوتر استفاده می‌کنیم، یعنی سیستم P به همراه قوانین نوع (a)، (c) و (e).
مساله کلاسیک بار مورد خاصی از مساله بار 1-0 چندبعدی با یک بعد می‌باشد. تقریباٌ می‌توان الگوریتم غشایی را برای حل مساله بار کلاسیک [7]درنظر بگیریم. الگوریتم جدید ما نسبت به الگوریتم در [7] مراحل محاسبه کمتری دارد، بویژه در الگوریتم در [7]. 2n+1 مرحله برای مطرح کردن همه assignment متغیرها استفاده می‌شود، حال آنکه در الگوریتم جدید ما، n+1 مرحله برای تولید کردن همه assignment متغیرها استفاده می‌شود. در اینجا n تعداد متغیرهاست. در این مفهوم، الگوریتم ما، اصلاح الگوریتم [7] می‌باشد.
این مقاله به صورت زیر طبقه‌بندی شده است:
در بخش 2، مفهوم سیستم P سازمان دهنده معرفی می‌شود که مدل محاسبه‌ای برای حل مساله بار 1-0 چندبعدی بوده و آن را در محاسبه با غشاءها درجه پیچیدگی چندجمله‌ای می‌نامند.
در بخش 3، برای حل مساله بار 1-0 چندبعدی به کمک سیستم‌های P سازمان دهنده با غشاءهای فعال 2 قسمتی، الگوریتم غشایی ارائه می‌دهد.
در بخش 4، بحث ارائه شده است.
2. سیستم P:
با توجه به [5] با معرفی سیستم P با غشاءهای فعال شروع می‌کنیم که در این قسمت جزئیات بیشتری وجود دارد.
ساختار یک غشاء به صورت نمودار Venn مطرح شد و با کمک رشته‌ای از پرانتزهای انتخابی دقیق (با یک جفت پرانتز خارجی) معرفی می‌شود. این جفت پرانتزهای خارجی با غشاء خارجی که «موپست» نامیده میشود، تطبیق دارد. هر غشایی بدون داشتن غشایی درونی، غشاء اولیه نامیده می‌شود. به عنوان مثال، ساختار درون همه غشاءها شماره‌گذاری شده است.در اینجا ما از عدد 1 تا 8 استفاده کرده‌ایم. عدد غشاءها، درجه ساختار غشاء را نشان می‌دهد، در حالی که بلندترین درخت مربوط به روش معمول با ساختار، عمق آن می‌باشد. در نمونه بالا ساختار غشایی با درجه 8 و عمق 4 داریم.
با توجه به چیزی که به دنبال دارد، غشاء می‌توان + یا – علامتگذاری کرد (و آن را به عنوان «تغییر الکتریکی» می‌نامند) یا با صفر (که آن را «تغییر خنثی» می‌نامند). در این مثال به ترتیب آن را به صورت می‌نویسند. غشاءهایی که فضای محدودی ندارند،‌ دقیقاً بوسیله غشاءها معرفی می‌شون (فضای یا جایگاه یک غشاء بوسیله غشاء و همه غشاءهایی که بلافاصله درون آن قرار دارند، de limited می‌شود [البته اگر غشایی وجود داشته باشد]).
در این مقاله اشیاء را قرار می‌دهیم که توسط سمبل‌های یک الفبا نشان داده شده است. چندین کپی از اشیاء یکسان در این فضا قرار دارد. بنابراین با چندین مجموعه اشیاء سروکار داریم. مجموعه‌ای که در بالای حدف V قرار دارد، توسط رشته‌ای در بالای V نشان داده شده‌اند: تعداد رخدادهای یک سمبل در رشته‌ای (V مجموعه‌ای از همه رشته‌ها بر V می‌باشد، رشته خالی به وسیله I معرفی می‌شود) به صورت [X]a می‌باشد و فراوانی شیء a را در مجموعه‌ای که به صورت x می‌باشد، نشان می‌دهد.
یک سیستم P با غشاءهای فعال و دوقسمتی ساختاری به صورت زیر دارد:

در اینجا:
1) m≥1 (اولین درجه سیستم)؛
2) O حرف مربوط به اشیاء می‌باشد؛
3) H مجموعه محدودی از اعداد برای غشاءها می‌باشد؛
4) M ساختار غشاء می‌باشد، شامل m غشاء بوده و با حرف H علامت‌گذاری می‌شود.
5) w1…wm مجموعه‌ای را رشته‌ای از o می‌باشد و مجموعه‌ای از اشیاء را معرفی می‌کند که در جایگاه‌های m از قرار دارد.
6) R مجموعه‌ محدودی از قوانین توسعه یافته می‌باشد که شامل شکل‌های زیر می‌باشد:

(قوانین تکامل یافته مربوط به غشاءها و وابسته به اعداد و بار الکتریکی غشاءها می‌باشد، اما مستقیماً شامل غشاءها نمی‌باشد، به این معنی که غشاءها نه در کابرد این قوانین شرکت می‌کند و نه می‌توان آنها را توسط آنها تغییر داد):

(قوانین برقراری ارتباط: یک شیء در غشاء تعریف می‌شود، احتمالاً در طول این فرآیند اصلاح می‌شود، همچنین قطبیت‌یابی غشاء متغیر می‌شود، اما نه شماره‌گذاری‌ آن):

(قوانین ارتباط، یک شیء از غشاء خارج می‌شود، احتمالاً در طول این فرآیند تغییر می‌کند، همچنین قطبیت‌یابی این غشاء تغییر می‌کند، اما نه شماره‌گذاری آن):

(قانون انحلال، در واکنش با یک شیء یک غشاء انحلال می‌یابد، در حالی که شیء که جزء این قانون می‌شود، ممکن است تغییر یابد):

(قانون تقسیمات برای غشاهای ابتدایی، در واکنش با یک شیء غشاء به دو غشاء و با یک عدد تقسیم می‌شود، احتمالاً با قطبیت مختلف شیء که به یک قانون مربوط می‌شود با دو غشاء جدید و احتمالاً شیء جدید جایگزین می‌شود):

اگر غشاء با عدد ho نسبت به غشاءهایی با اعداد h1, … ,hm که در بالا مشخص شد، غشاهای دیگری را دربر گیرد. بنابراین برای کاربردی کردن این قانون باید تغییرات خنثی داشته باشند. این غشاءها کپی می‌شوند و سپس بخشی از محتوای هر دو کپی جدید غشاء ho می‌باشند.
(تقسیم‌بندی غشاءهایی که ابتدایی نیستند، تنها در صورتی انجام می‌شود که یک غشاء شامل 2 غشاء زیرین با قطبیت مخالف + و – باشد، این دو غشاء در دو غشاء جدید جدا می‌شوند، اما قطبیت‌یابی آنها تغییر می‌کند. همیشه همه غشاءها با قطبیت مخالف با بکار بردن این قانون جدا می‌شوند).
برای بیان توضیحات دقیق در مورد استفاده از این قوانین، باید به [5.6] اشاره کنیم. در اینجا می‌گوییمکه قوانین در حالت همسویی غیرقطعی مرسوم در محاسبه غشاء به شکل وارونه استفاده می‌شوند. در هر مرحله، ابتدا از قوانین نوع a استفاده می‌کنیم. از قوانین دیگری که شامل یک غشاء می‌شود، باید استفاده کرد که در یک مرحله غشاء می‌تواند موضوع تنها یک نوع قانون از قانون‌های (f)-(b) باشد. به این ترتیب از شکل‌گیری سیستم به شکل‌گیری بعدی تغییراتی خواهیم داشت. توالی تغییرات قابل محاسبه است، در صورتی که قوانین دیگر در آخرین شکل‌گیری بکار نرود، محاسبه متوقف می‌شود.
برای پی بردن به این مفهوم، یک مساله در زمان چندجمله‌ای توسط سیستم‌های P حل می‌شوند، ضروری است تا مقیاس پیچیده‌ای را برای سیستم‌های P همانطور که در [11] گفته شد، یادآوری کنیم.
به مساله تقسیم‌گیری A و دلالت آن بر A(n) مثالی از A باندازه n توجه کنید. طبقه‌بندی x از سیستم‌های غشاء و تابع کلی f: NN داده شده است (به عنوان مثال تابع‌های چندجمله‌ای و خطی). به نظر ما مساله A به MCx(f) تعلق دارد، در صورتی که گروهی از سیستم‌های غشایی از نوع x وجود دارد، به گونه‌ای که:
1. گروهی یک شکل می‌باشد، ماشین تورینگ دیده می‌شود که را در زمان چندجمله‌ای با شروع از n می‌سازد.
2. همریز می‌باشد.شیء شناخته شده yes دیده می‌شود، به گونه‌ای که یا در همه محاسبات شی yes از سیستم خارج می‌شود یا در هیچ محاسبه‌ای صورت نمی‌گیرد.
3. صدا می‌باشد، یعنی شی yes را خارج می‌کند، ‌اگر جواب به ، «yes» باشد.
4. کارایی f می‌باشد، یعنی همیشه در مرحله f(n) مکث می‌کند.
درجه‌بندی پیچیدگی چندجمله‌ای مربوط به گروه سیستم‌های غشایی x به صورت زیر می‌باشد:
PMCx=U MCx(f)
در [6] توضیح این درجه‌بندی پیچیدگی بر اساس ساختار نیمه‌یکسان سیستم‌های P می‌باشد که مساله A را حل می‌کند: از n شروع نمی‌کنیم، بلکه از مثال A(n) شروع می‌کنیم. برای توضیح دقیقتر تفاوت بین سیستم P یک شکل و سیستم P نیمه یکسان لطفاً به [9] توجه کنید. برای چیزی که در زیر صورت گرفته، از سیستم‌های P تشخیص دهنده استفاده می‌کنیم. در ابتدا [9.11] را مطالعه کنید، سپس به سیستم P با ورودی را ملاحظه کنید. چنین ابزاری چندتایی ( ) می‌باشد، در اینجا:
سیستم P با حروف شیء و چندمجموعه‌ اولیه می‌باشد (در ارتباط با غشاءهای عددگذاری شده به ترتیب با 1, … , m می‌باشد).
∑: حروف (ورودی) شامل بوده و در نتیجه w1, … ,w2 چند مجموعه می‌باشند.
Io: عدد غشاء شناخته شده (ورودی) می‌باشد.
در صورتی که w مجموعه‌ای از ∑ باشد، پس شکلگیری اولیه ( ) با ورودی w (μ, w'1, … ,w'm) می‌باشد و در اینجا w'i=wi، چون w'i.=wi.Uw, i≠io می‌باشد.
محاسیه سیستم P با ورودی را به روش طبیعی توضیح دادیم. توجه داشته باشید که شکل‌گیری اولیه را می‌توان با اضافه کردن چند مجموعه ورودی w بر ∑ به شکل‌گیری اولیه سیستم π بدست آورد:
اکنون سیستم P تشخیص دهنده، یک سیستم P به همراه ورودی (π, ∑, io) می‌باشد، به گونه‌ای که:
1. الفبا یا اعداد گذاری اشیاء شامل 2 بخش مجزای no, yes می‌باشد.
2. همه محاسبات سیستم متوقف می‌شود.
3. اگر C محاسبه π باشد، پس هدف yes یا هدف no (نه هر دو تا) از محیط خارج می‌شود (تنها در آخرین مرحله محاسبه).
به نظر ما c یک محاسبه قابل قبول می‌باشد، اگر هدف yes در محیط شکل مکث ظاهر شود.
3. حل مساله بار 1-0 چند بعدی توسط سیستم P تشخیص دهند، به همراه غشاهای فعال:
3-1 شکل مساله:
مساله بار 1-0 چندبعدی (MKP) مساله ترکیبی NP کامل شناخته شده می‌باشد. تصمیم‌گیری شکل‌گیری MKP به صورت زیر می‌گیرد:
عدد صحیح k داده می‌شود، تابع هدف نیز داده می‌شود و تابع روبرو شکل می‌گیرد ، چون و چون j=1, … ,n در اینجا bi, cj, wi,j عدد صحیح غیرمنفی هستند.
تصمیم می‌گیرند که آیا assignment متغیرهای xj به گونه‌ای وجود دارد که محدودیت‌ها را پر کند و تابع هدف بزرگتر از ----- یا برابر k شود.
MKP هم از نقطه‌نظر تئوری و هم عملی، مساله خوش‌بینانه ترکیبی مهم بحساب می‌آید که می‌تواند مسائل عملی زیادی را مثل بودجه‌بندی اصلی شکل دهد. در اینجا پروژه j، سود Cj و مصرف (wij) بخش‌هایی از منبع I را دارد. هدف اصلی تعیین زیرمجموعه پروژه‌های n می‌باشد، به گونه‌ای که سود کلی افزایش یابد و همه محدودیت‌های منبع از بین برود. کاربردهای مهم دیگر شامل بارگیری بار [‍12] مساله cutting stock و توزیع پردازشگر در سیستم‌های توزیع شده [3] می‌باشد.
نمونه خاص از MKP با m=1 مساله بار کلاسیک (kp) می‌باشد. Kp جزء NP-hard نیست، چون برای آن الگوریتم‌های تقریبی چندجمله‌ای وجود دارد. در واقع این موضوع موردی برای MKP کلی به حساب نمی‌آید. در چهارچوب محاسبه سلولی، الگوریتم غشایی برای حل kp در [7] گفته شده است. در بخش بعدی این فصل الگوریتم غشایی برای MKP کلی را مطرح می‌کنیم.
3-2 الگوریتم غشایی برای مساله بار 1-0 چندبعدی:
از طریق الگوریتم نیروی قوی در چارچوب سیستم‌های P تشخیص دهنده با غشاهای فعال 2 قسمتی، راه حل MKP را نشان می‌دهیم. با توجه به نمونه u از MKP که در بخش بالا گفته شد (براسی سهولت کار) را iمین نابرابری الزامی می‌دانیم و را نابرابری (m+1) می‌نامیم. به biyrction چند جمله‌ای ( ) بین (l≥2) N*, N*1 توجه کنید که به صورت زیر است:
(y1, y2)= (y1+y2)(y1+y2+1)/2+y1, (y1,y2,y3)[(y1, y2), y3] and (y1,…, yl-1, yl)=[(y1,…, yl-1), yl],
در اینجا N* بر مجموعه‌ای از اعداد صحیح غیرمنفی دلالت دارد. اندازه تابع h(u)=(n,k,,b1, … ,bm) و تابع ورودی 2 را توضیح می‌دهیم. در اینجا اولین زیرنویس i از xi, j, J بر iمین نابرابری دلالت دارد. دومین و سومین زیرنویس j از lxi, j, J متغیر xj مطابقت دارد.
برای هر (n, k, b1, … ,bm) به سیستم p تشخیص دهنده توجه می‌کنیم. در اینجا:

به صورت زیر تعریف می‌شود.

محتوای اولیه هر غشاء به صورت زیر است:

مجموعه قوانین یعنی R ارائه شده است (در مورد استفاده از این قوانین در طول محاسبات توضیحاتی می‌دهیم):
3-2-1 مرحله تولید یا ساخت

هر کدام از n مرحله اول، هر غشاء با شماره 2 کپی می‌شود تا همه assignmentهای احتمالی برای متغیرهای x1, x2, … ,xn فراهم شود.

قوانین در گروه G2 برای تکمیل فرآیندی می‌باشد که به غشاءها با شماره 2 اجازه می‌دهد تا assignment متغیر xj را ترکیب کند، به طریقی که اگر متغیر xj مقدار 1 را به خود اختصاص می‌دهند در غشاهای همانند با عدد با عدد 2 و بار الکتریکی مثبت، اشیاء (1≤i≤m)xi,j,0) برای شی‌های ri,j شکل می‌گیرد و شماهای xm+1,j,0 برای اشیاء sm+1,j شکل می‌گیرد، در غیر اینصورت اشیاء xm+1,j,0, xi,j,0 در غشاهای همانند با عدد 2 و بار الکتریکی خنثی ناپدید می‌شود.

قوانین در گروه (G2) تنها زمانی که سومین زیرنویس xi,j,j به صفر برسند، استفاده می‌شوند. قوانین (G3) مسوول کاهش سومین زیرنویس xi,j,j می‌باشد، به این طریق برای بدست آوردن همه assignmentهای احتمالی مسیری دایره‌وار ایجاد می‌کنند.

بعد از مرحله n+1، غشاهای 2n با عدد 2 ایجاد شده‌اند، هر کدام از آنها 

فرمت این مقاله به صورت Word و با قابلیت ویرایش میباشد

تعداد صفحات این مقاله  24  صفحه

پس از پرداخت ، میتوانید مقاله را به صورت انلاین دانلود کنید


دانلود با لینک مستقیم


دانلود مقاله حل مساله بار 1-0 چند بعدی توسط سیستم‌های P

دانلودمقاله بررسی مکانیزم‌های سویچینگ در سیستم‌های مخابرات

اختصاصی از فایلکو دانلودمقاله بررسی مکانیزم‌های سویچینگ در سیستم‌های مخابرات دانلود با لینک مستقیم و پر سرعت .

 

 

 

مقدمه‌ای بر شبکه‌های مخابراتی
1-1 تعریف شبکه‌های مخابراتی و بررسی یک شبکه تلفی ساده
شبکه‌های مخابراتی جهت انتقال سیگنال‌ها از نقطه‌ای به نقطه دیگر بکار می‌روند. بهترین مثال یک شبکه مخابراتی، شبکه تلفن است و ساده‌ترین شبکه تلفن از یک تلفن به ازای هر مشترک تشکیل شده است. مسیر ارتباطی بین این دو تلفن را یک رابط (link) می‌گوییم.

شکل 1-1 ساده‌ترین شبکه تلفن
در صورتی که هر دو مشترک فوق بتوانند با یکدیگر ارتباط داشته باشند، آن را خط دوطرف می‌نامیم. هرگاه بخواهیم این شبکه را گسترش دهیم، برای هر مشترک جدید نیاز به یک رابط جدید داریم شکل 2 یک شبکه تلفن با چهار مشترک به همراه تجهیزات موردنیا آ ن را توصیف می‌کند.

شکل 2-1 یک شبکه تلفن با چهار مشترک
همانطور که مشاهده می‌کنیم، توسعه شبکه از دو مشترک به بالا باعث اضافه شدن وسیله‌ای دیگر به نام سوئیچ شده است که تعیین کننده مقصد مکالمه هر کدام از مشترکین می‌باشد. در صورتی که بخواهیم شبکه فوق را باز هم گسترش دهیم، تعداد رابطه‌ها افزایش می‌یابد یا یک تقریب را می‌توان گفت هرگاه تعداد N مشترک تلفنی داشته باشیم، در این صورت تعداد رابطه‌‌ها N2/2 خواهد شد. مثلاً اگر 10000 مشترک تلفنی در این شبکه موجود باشد، در این صورت تعداد رابطه‌های موجود 500000=2/2 10000 خواهد شد. پس با این روش امکان توسعه شبکه در مقیاس وسیع وجود ندارد.
2-1 مرکز تلفن
در شبکه‌های عملی مبنای تمرکز تمام سوئیچ‌ها در یک محل به نام مرکز سوئیچینگ و تخصیص دادن تنها یک رابط به ازای هر مشترک گذاشته شده است.

شکل 3-1 یک مرکز تلفن محلی برای تمرکز تمامی سوئیچ‌ها
هر سه کلمه مرکز سویئیچینگ و مرکز تلفن اشاره به یک مفهوم دارند. هر کدام از رابطه‌ها که به مرکز متصل می‌گردد، تشکیل یک حلقه (LOOP) بین مرکز و مشترک ایجاد می‌کند. رابط‌های مشترکین از طریق کابل وارد مرکز تلفن می‌شود. جهت افزایش قابلیت انعطاف اتصال بین رابط‌ها در کابل و تجهیزات مرکز تلفن از وسیله‌ای به نام Main Distribution Frame (MDF) استفاده می‌شود. از طرفی MDF محلی مناسب برای تست نیز می‌باشد. در MDF تجهیزات حفاظتی ولتاژ و فیوز نیز بکار رفته است. هر مرکز تلفن تعداد رابط‌های محدودی را شامل می‌شود. مثلاً یک مرکز تلفن با ظرفیت 100 شماره تنها می‌تواند به 100 مشترک سرویس دهد. بنابراین با گسترش شبکه‌های تلفنی و بالا رفتن تعداد مشترکین بایستی بین مراکز تلفن نیز از طریق مراکز دیگر ارتباط برقرار کنیم. در این حال به مراکزی که به تعداد محدودی از مشترکین مثلاً 10000 تا سرویس می‌دهند، مراکز محلی (Local Exchange) و به مراکزی که بین مراکز محلی ارتباط برقرار می‌کند. مراکز اولیه (Primary center) و به مراکزی که بین مراکز محلی ارتباط برقرار می‌کنند، مراکز ثانویه (Secondary center) و نهایتاً به مراکزی که بین مراکز ثانویه ارتباط برقرار می‌کنند، مراکز بین‌المللی (International exchanges) می‌گویند.

شکل 4-1 ارتباط بین مراکز کوچکتر با بزرگتر را در یک شبکه وسیع
3-1 تقسیم‌بندی شبکه‌های تلفنی و نحوه ارتباط آنها با یکدیگر
می‌توان در یک طبقه‌بندی کلی شبکه‌ها را به دو دسته عمومی و خصوصی تقسیم کرد. شبکه‌های عمومی قابل استفاده توسط مردم می‌باشد، ولی شبکه‌های خصوصی به شرکت‌ها یا افراد جهت استفاده خصوصی آن‌ها تخصیص داده می‌شود. شبکه‌های خصوصی را Private Branch Exchange (PBX) می‌نامند. گاهی اوقات به PABX, PBX نیز می‌گویند. شبکه‌های خصوصی تمام وظایف شبکه‌های عمومی را دارند. به رابط‌های بین یک شبکه خصوصی و عمومی یا دو شبکه خصوصی، ترانک (Trunk) به واسطه‌ای گفته می‌شود که ارتباط دهنده محیط درون و برون PBX است)، می‌گویند.
همانطور که از جمله فوق استنباط می‌شود، سه نوع ترانک وجود دارد:
1. ترانک شهری یا O.C ترانک که جهت ارتباط PBX با مراکز تلفن شهری است.
2. ترانک خصوصی به یا Tie Trunk (Tie به معنای گره زدن می‌باشد. خطوطی هستند که دو مرکز را به طور خصوصی به هم وصل می‌کنند) که جهت ارتباط بین مراکز خصوصی بدون واسطه قرار گرفتن C.O است.
3. ترانک متصل کننده دو C.O به یکدیگر که از لحاظ سخت‌افزاری با Tie Trunk تفاوتی نمی‌کنند. در این حالت از دیدگاه PABX مرکز تلفن محلی، یک مرکز تلفن شهری C.O (Central Office) است. PABX بر حسب نیاز می‌تواند یک یا چند ترانک متصل شونده به مرکز تلفن شهری را به خود اختصاص دهد.

شکل 5-1 مثال ارتباط یک PBX با مرکز تلفن شهری
شکل بالا که صرفاً یک مثال از PBX است، نشان می‌دهد که این مرکز خصوصی چهار خط C.O ترانک و مثلاً 100 مشترک داخلی دارد. مثال دیگری است که در طی آن سه مرکز PBX از طریق خطوط Tie Trunk به طور خصوصی به یکدیگر مرتبط می‌شوند و با مراکز شهری خود نیز توسط رابط‌های C.O ترانک در ارتباط‌اند.

شکل 6-1 ارتباط خصوصی سه مرکز تلفن
4-1 انواع ترانک
در تقسیم‌بندی دیگری ترانک‌ها می‌توانند به صورت یک جهته یا دو جهته عمل کنند. در ترانک دو جهته هم امکان برقراری تماس از سمت مرکز فرضی A به سمت مرکز فرضی B (خارج شونده Out Going) و هم امکان تماس از سمت مرکز B به سمت مرکز A (وارد شونده In Comming) است. در مثال زیر، ترانک‌های بکار رفته در دو مرکز A و B هر دو به صورت بیرون رونده (Out Going) و وارد شونده (In Coming) عمل می‌کند.

شکل 7-1 یک ترانک دوجهته
در ترانک یک جهته تنها امکان برقراری تماس از دست یکی از دو مرکز A و B میسر است.

شکل 8-1 امکان برقراری تماس در ترانک یک جهته از یک سمت
مثالی از ترانکی که می‌تواند به صورت دو طرفه عمل کند، CEPT و E&M است. این ترانک‌ها به صورت یک جهته یا دوجهته، و در حالت یک جهته به صورت In Coming و Out Going می‌توانند برنامه‌ریزی شوند. مثالی از حالت یک طرفه از ترانک دیگری به نام D.O.D Trunk هم می‌توان استفاده کرد. البته ترانک D.O.D به صورت دو طرفه هم استفاده می‌گردد، منتها در EC512 یک طرفه آن استفاده شده است. شکل زیر تا حدی مطلب را روشن می‌کند.

شکل 9-1
5-1 آنالیز یک مکالمه
برای معرفی سیستم‌های سوئیچینگ در ابتدا لازم است که مراحل یک مکالمه تلفنی مورد بررسی قرار گیرد. به طور کلی یک مکالمه تلفنی از 10 مرحله تشکیل شده است. در شکل زیر یک مکالمه از دید مشترک و مرکز بررسی شده است.

مرکز تلفن * exchange *

حال توضیح مختصری راجع به مراحل می‌دهیم:
1. با برداشتن گوشی توسط مشترکین سیگنال Off Hook ساخته می‌شود. این سیگنال به مرکز اطلاع می‌دهد که باید آماده اداره کردن یک مکالمه تلفنی باشد.
2. در مرحله دوم باید مشترک مربوطه در مرکز شناسایی شود. هر مشترک شماره خاصی دارد که در حافظه ذخیره شده و توسط آن شناخته می‌شود.
3. هنگامی که سیگنال تقاضای مکالمه توسط مرکز دریافت شد ، بایستی یک سری تجهیزات عمومی به این مشترک اختصاص داده شود. این تجهیزات به دو دسته تقسیم می‌شوند:
الف) تجهیزات دائمی
ب) تجهیزات موقتی
تجهیزات دائمی در تمام طول مکالمه موردنیاز می‌باشند. مثلاً‌ تخصیص فضای حافظه که در طول مکالمه جزئیات را ذخیره می‌کند.
تجهیزات موقتی فقط در زمان شروع به کار کردن (Set up) مکالمه موردنیاز است. مثلاً محلی که برای ذخیره رقم‌های شماره تلفن که ضمن مشخص کردن مسیر مکالمه در شبکه، مقصد را نیز مشخص می‌کند. پس از آنکه تمام این فضاهای حافظه تخصیص داده شد. سیگنال بوق آزاد (Dial Tone) به سمت مشترک شماره گیرنده ارسال می‌شود تا مشخص کند که مرکز آماده دریافت شماره تلفن است. امکان غیرقابل دسترس بودن خط نیز در این مرحله صورت می‌گیرد.
4. مشترک شماره گیرنده بعد از دریافت بوق آزاد (Dial Tone) با شماره‌گیری، شماره‌ها را به سمت مرکز ارسال می‌کند. رقم‌ها به صورت سیگنال به مرکز فرستاده شده و در آنجا ذخیره می‌شود.
5. در این مرحله سیستم کنترلی می‌بایستی شماره‌های دریافتی را آنالیز کرده تا مسیر مکالمه مشخص شود.
6. در این مرحله ورودی و خروجی از دید مرکز مشخص می‌باشد. کار بعدی انتقال یک مسیر بین آنها از طریق سوئیچ‌‌های مرکزی می‌باشد. در داخل کنترل سیستم، الگوریتم‌های خاصی جهت انتخاب مسیر سوئیچ‌ها مهیا می‌باشد. هر سوئیچ در مسیر انتخاب شده باید چک شود که آیا در حال استفاده است یا نه؟ در صورتی که سوئیچ آزاد باشد، ربوده و Seize می‌شود.
7. برای ادامه کار باید سیگنالی به مرکز فرستاده شود. اگر این مشترک محلی باشد ارسال ولتاژ زنگ، تلفن مشترک مربوطه را فعال می‌کند، کافیست. در غیراینصورت باید سیگنالی به مرکز بعدی فرستاده شود تا آن را جهت کارهای مربوطه فعال کند. در این حال بوق برگشت زنگ به مشترک مبداء ارسال می‌شود.
8. در این مرحله مشترک مقصد با برداشتن گوشی خود سیگنال پاسخی را به مرکز تلفن ارسال می‌کند. به دنبال دریافت این سیگنال، مرکز سیگنال برگشت زنگ و ارسال ولتاژ زنگ را از دو مشترک مبدا و مقصد قطع می‌کند و پس از آن امکان مکالمه بین این دو برقرار می‌شود.
9. هنگامی که مکالمه در حال انجام است، عمل نظارت به صورت دائم انجام می‌گیرد تا هم هزینه‌ها محاسبه گردد و همچنین وضعیت سیگنال پاک کننده (Clear) بررسی شود.
10. در این مرحله با گذاشتن گوشی مبداء یا مقصد، فضاهای حافظه موجود آزاد شده و اتصالات مربوطه هم آزاد می‌گردند.

 

 

 


فصل دوم
اساس سیستم‌‌های سوئیچینگ دیجیتال

 


1-2 تکنیک مالتی پلکسینگ
برای درک راحت سیستم‌‌های سوئیچینگ دیجیتال ابتدا بایستی مفاهیم پایه شرح داده شود. از این توجه شما را معطوف به روش مالتی پلکس (Multiplex) می‌کنیم. فرض کنید که قصد داریم n سیگنال را از مبدا A به مقصد B برسانیم. ابتدایی‌ترین روشی که ممکن است به ذهن برسد، استفاده از n رابط می‌باشد.

شکل 1-2 ابتدایی‌ترین روش ممکنه جهت انتقال سیگنال از A به B
استفاده از روش فوق هنگامی که تعداد سیگنال‌‌ها افزایش می‌یابد، مناسب نیست، چرا که تعداد رابط‌ها افزایش می‌یابد و به دنبال آن هزینه‌ها و فضای اختصاصی جهت انجام این کار بیشتر می‌شود. استفاده از سیستم مالتی پلکس این مشکل را حل می‌کند. با استفاده از این روش انتقال یک گروه از سیگنال‌ها روی یک مسیر واحد تحقق می‌پذیرد. یک سیستم مالتی پلکس شامل این سیگنال ورودی است که با یکدیگر ترکیب شده و یک سیگنال مالتی‌پلکس را می‌سازد. این سیگنال روی مسیر انتقال منتقل شده و سپس n سیگنال در انتهای مسیر از یکدیگر تفکیک می‌شوند. یه عمل تفکیک‌ کردن سیگنال‌ها از یکدیگر دی مالتی پلکس (De Multiplex) گویند.

شکل 2-2 یک سیستم مالتی پلکس
برای سادگی، شکل فوق یک مسیر یک طرفه (Half Duplex) را نشان می‌دهد. در صورتی که تجهیزات لازم در مبداء و مقصد هر کدام شامل یک Multiplexer و De Multiplex می‌باشند. این کار جهت برقراری ارتباط دوطرفه (Full Duplex) می‌باشد. روش‌های مختلفی برای مالتی پلکس کردن موجود است که مهمترین آنها Frequency Division Multiplexing (FDM) و Time Division Multiplexing (TDM) می‌باشد.
2-2 معرفی باس استاندارد
در روش فوق اطلاعات مربوط به هر n سیگنال در فاصله زمانی که به آن یک کانال می‌گویند، روی مسیر انتقال می‌گردند. زمان اشغال شده توسط هر کانال را یک شکاف زمانی (Time Slot) می‌گویند. در هر لحظه نیز اطلاعات مربوط به یک سیگنال از طریق کانال آن سیگنا، بین مبداء‌ و مقصد منتقل می‌گردد. تعداد کانال‌های مالتی پلکس شده جهت سیگنال‌‌های صوتی عموماً 24 (استاندارد آمریکایی) یا 32 (استاندارد اروپایی)تایی است. بنابراین سیگنال مالتی پلکس شده حاوی 24 کانال یا 32 کانال است که به آن یک Setial Telecom –Bus (ST-BUS) می‌گویند. به دلایلی که در ادامه بحث خواهیم داشت، مدت زمان هر ST-BUS در هر دو روش امریکایی (T1) و اروپایی (E1)، معادل 125MSe است.

 


شکل 3-2 ST-BUS به روش اروپایی
بنابراین یک سیستم بر مبنای روش TDM شامل یک مسیر مشترک است که توسط کانال‌های مختلف اشغال می‌گردد. جهت استفاده از تکنیک MUX سیگنال‌های ورودی باید به رشته‌ای (Stream) از نمونه‌ها تبدیل شده و هر یک در Time Slot مربوط به خود روی مسی مشترک قرار می‌گیرد.
3-2 پروسه نمونه‌برداری
پروسه نمونه‌برداری مطابق شکل زیر است:

شکل 4-2 یک سیستم مالتی پلکس به همراه نمونه‌بردار
در واقع نمونه‌های موردنظر از سیگنال ورودی با استفاده از یک قطار پریودیک از پالس‌‌های زمانی که سیستم نمونه‌بردار ر ا On و Off می‌کنند، تشکیل شده است. نمونه‌ها به شکل پالس‌هایی هستند که دامنه آن مساوی مقدار دامنه سیگنال موردنظر در زمان نمونه‌برداری است.

شکل 5-2 نحوه نمونه‌برداری از یک سیگنال ورودی
یک عامل اساسی در بحث مالتی پلکسینگ تبدیل سیگنال صحبت به صورت دیجیتال است. امرور مهمترین روش دیجیتال کردن سیگنال صحبت، روش Pulse Code Modulation (PCM) می‌باشد.
4-2 استفاده از تکنولوژی دیجیتال
معمول‌ترین رویه تبدیل سیگنال‌های ‌آنالوگ به دیجیتال PCM می‌باشد. در این مرحله به هر نمونه، عددی باینری متناسب با دامنه و جهت آن نسبت داده می‌شود. این تبدیل که نسبت به سیستم‌های مالتی پلکس کامل‌تر می‌باشد، شامل سه مرحله است:
1. نمونه‌برداری
2. کوانتیزه کردن
3. کدگذاری (En Coding)
در شکل زیر پروسه یک PCM در مورد یک کانال ترسیم شده است.

شکل 6-2 پروسه PCM در مورد یک کانال
اولین مرحله، نمونه‌برداری از سیگنال ورودی صحبت می‌باشد. در نتیجه Sequenای از نمونه‌های آنالوگ که به آنها Pulse Amplitude Modulation (PAM) می‌گوییم، تولید می‌شود. در مرحله بعدی دامنه‌ها به فواصل محدودی تقسیم می‌شوند. به نمونه‌هایی که دامنه آنها در یک فاصله مشخص قرار گرفته‌اند، یک مقدار تعلق می‌گیرد. به این مرحله کوانتیزه کردن می‌گویند. در مرحله کدگذاری مقادیر نمونه‌‌های کوانتیزه شده به کدهای باینری تبدیل می‌شود. پس پروسه PCM، یک Stream از رقم‌های باینری تولید می‌کند که بیانگر شکل موج صحبت است. این رقم‌های باینری روی خط انتقال منتقل می‌شود. در انتهای مسیر کد باینری به یک سری نمونه‌های PAM تبدیل و سرانجام با استفاده از یک فیلتر پایین‌گذر شکل موج ورودی از نمونه‌های PAM ساخته می‌شود.

شکل 7-2 دو نمونه یکی نزدیک آستانه بالا و دیگری نزدیک آستانه پایین
همانطور که در شکل پیداست، روش کوانتیزه کردن مقداری خطا روی هر دو نمونه ایجاد می‌کند که نتیجه آن اعوجاجی است که روی شکل موج حاصل می‌گردد. این اعوجاج به اعوجاج کوانتیزه کردن معروف است.
بر اساس تئوری نایکوئیست نرخ نمونه‌برداری باید بزرگتر یا مساوی دو برابر بزرگترین فرکانس موجود در شکل موج باشد. پس اگر ماکزیمم فرکانس موجود در شکل موجود موردنظر fh باشد، نرخ نمونه‌برداری یا fs بایستی به صورت زیر باشد:
fs > 2fh
از آنجا که پهنای باند سیگنال آنالوگ صوتی در تلفن 3.5KHz است، لذا با ضریب اطمینان مناسبی می‌توان fs را معادل 8KHz انتخاب کرد. پریود این فرکانس 125MSe می‌باشد که قبلاً در ST-BUS به آن اشاره شد. لازم به ذکر است که انتخاب فرکانس نمونه‌برداری بیش از 8KHz باعث اتلاف بی‌جهت پهنای باند و انتخاب فرکانس کمتر از 8KHz باعث تداخل می‌شود.
در شکل زیر چگونگی مالتی پلکس کردن سه کانال روی یک مسیر مشخص شده است. هر شکل موج با فرکانسی بیشتر یا مساوی فرکانس نایکوئیست نمونه‌برداری شده است. ولی‌ چون نمونه‌برداری سیگنال‌ها در زمان‌های مختلف صورت گرفته، امکان فرستادن اطلاعات هر سه کانال روی یک مسیر واحد مهیا شده است.
5-2 روش‌های کنترل
همانطور که قبلاً توضیح دادیم به نمونه‌هایی که دامنه آنها در یک فاصله مشخص قرار می‌گیرند، همگی یک مقدار متعلق می‌گیرد که به آن کوانتیزه کردن می‌گویند. اگر فواصل نمونه مساوی باشد، اعوجاج کوانتیزه کردن برای سیگنال‌های کوچک بدتر از سیگنال‌های بزرگ است. این مشکل با لگاریتمی کردن فواصل کوانتومی کاهش می‌یابد، در نتیجه برای سیگنال‌ها با دامنه بزرگتر، خطا بیشتر و برای سیگنال‌های با دامنه کوچک خطا کمتر می‌شود. با این روش محدوده وسیع‌تری از دامنه‌های پایین‌تر با تعداد محدود مقدار کوانتومی، En Code می‌شوند.

از آنجا که با این روش دامنه‌های بالاتر در سطوح کوانتومی کمتری Compress (فشرده) می‌شوند، به این روش کوانتیزه کردن لگاریتمی، کامپندینگ Companding (فشردن و نافشردن) نیز گفته می‌شود. به علاوه این روش مقرون به صرفه هم هست، چرا که با این روش به سطوح کوانتومی کمتری برای عمل کوانتیزه کردن نیاز است. عموماً دو روش Companding استاندارد شده است که به نام‌های A law و MU Law معروفند که تفاوت این دو تنها در مشخصه لگاریتمی آنها می‌باشد. در روش A Law از 13 قسمت (Segment) و در روش MU Law از 15 قسمت استفاده شده است.

 

فرمت این مقاله به صورت Word و با قابلیت ویرایش میباشد

تعداد صفحات این مقاله  57  صفحه

پس از پرداخت ، میتوانید مقاله را به صورت انلاین دانلود کنید


دانلود با لینک مستقیم


دانلودمقاله بررسی مکانیزم‌های سویچینگ در سیستم‌های مخابرات

دانلود پایان نامه تشخیص بن بست در سیستم‌های توزیع شده(94 صفحه قیمت 500 تومان فرمت word)

اختصاصی از فایلکو دانلود پایان نامه تشخیص بن بست در سیستم‌های توزیع شده(94 صفحه قیمت 500 تومان فرمت word) دانلود با لینک مستقیم و پر سرعت .

دانلود پایان نامه تشخیص بن بست در سیستم‌های توزیع شده(94 صفحه قیمت 500 تومان فرمت word)


 دانلود پایان نامه تشخیص بن بست در سیستم‌های توزیع شده(94 صفحه قیمت 500 تومان فرمت word)

قالب بندی : Word

 

شرح مختصر : امروزه کمتر سیستمی را می توان یافت که روی یک کامپیوتر متمرکز باشد. رشد روزافزون استفاده از سیستمهای توزیع شده، اهمیت تحقیق و پژوهش در راستای حل موانع و مشکلات موجود در این سیستمها را بیشتر آشکار می نماید. از جمله سیستمهای توزیع شده می توان به بانکهای اطلاعاتی توزیع شده، سیستم عاملهای توزیع شده، و سیستمهای کارگزار موبایل اشاره نمود. سیستم توزیع شده از مجموعه ای از فرآیندهایی که از طریق ارسال پیام با یکدیگر در ارتباط اند،تشکیل شده است.یکی از مسائل مهم در سیستمهای توزیع شده در راستای مدیریت منابع، تشخیص بن بست توزیع شده است. مدیریت منابع زمانی که فرایندهای درخواست کننده در سطح شبکه در مکانهای مختلف توزیع شده اند،فرایند تشخیص را نسبت به سیستمهای متمرکز، دشوارتر می نماید. طی دهه اخیر الگوریتم های زیادی برای تشخیص بن بست در سیستم های توزیع شده ارائه شده است که تعداد زیادی از آنها موفق به تشخیص بن بست نمی شوند و یا بن بست هایی را گزارش می کنند که در واقع وجود ندارند و یا اینکه اثبات شده است که نادرست اند. هدف از این تحقیق مطالعه و بررسی روشهای مختلف تشخیص بن بست در سیستمهای توزیع شده، شناسایی مشکلات، محدودیت های آنها و ارائه راه حل عملی مبتنی بر واقعیات موجود در سیستمهای توزیع شده در خصوص مشکلات شناسایی شده است.

فهرست :

مقدمه

فصل اول: تشخیص بن بست در سیستمهای توزیع شده

مفاهیم پایه

انواع مدلهای بن‌بست بر اساس سیستم تبادل پیام

انواع مدلهای بن‌بست بر اساس نوع درخواست

شرایط وجود بن‌بست

طبقه‌بندی الگوریتم‌های تشخیص بن‌بست

فصل دوم: مروری بر الگوریتم‌های تشخیص بن‌بست

مقدمه

نمونه‌ای از الگوریتم متمرکز جهت تشخیص بن‌بست در سیستمهای توزیع‌شده

الگوریتم هو رامامورتی

نمونه‌ای از الگوریتم‌های تشخیص بن‌بست سلسله‌مراتبی

الگوریتم منساس – مانتر

الگوریتم هو – رامامورثی

نمونه‌هایی از الگوریتم‌های توزیع‌شده

الگوریتم تشخیص بن‌بست چندی – مسیرا – هاس

الگوریتم محاسبه پخش کردن چندی – مسیرا – هاس

الگوریتم براچا – توگ

الگوریتم منساس و مانتز الگوریتم ابرمارک

الگوریتم ابرمارک

الگوریتم بدالض

فصل سوم: مروری بر الگوریتم‌های تشخیص بن‌بست توزیع شده تعقیب یال

مقدمه

بررسی الگوریتم‌های تشخیص بن‌بست تعقیب یال

الگوریتم میچل و مریت

الگوریتم سینها و ناتارجان

الگوریتم چودهاری – کوهلر – استنکویچ و توسلی

الگوریتم سینقال و شمکالیانی

تشخیص بن‌بست توزیع شده و حل آن بر اساس ساعتهای سخت‌افزاری

ارائه روشی برای حذف بن‌بست نادرست در الگوریتم‌های تشخیص بن‌بست

نتیجه‌گیری

فصل چهارم: الگوریتم‌های تشخیص بن‌بست توزیع شده تحمل خطاپذیر

مقدمه

مروری بر الگوریتم‌های تحمل‌پذیر خطا جهت تشخیص بن‌بست

معرفی مدل سیستم تشخیص خرابی بر اساس شاخص زمان اتصال

یک الگوریتم تشخیص بن‌بست توزیع شده تحمل‌پذیر خطا

اثبات درستی الگوریتم

نتیجه‌گیری

فصل پنجم: تشخیص و حل بن‌بست در سیستمهای نماینده موبایل

مقدمه

معرفی سیستمهای نماینده موبایل(نسل آینده سیستمهای توزیع شده)

تشخیص بن‌بست توزیع‌شده در سیستمهای نماینده موبایل

معایب الگوریتم اصلی و مشکلات کارایی الگوریتم

الگوریتم تشخیص بن‌بست توزیع شده مبتنی بر اولویت بهبودیافته

آنالیز کارایی الگوریتم بهبودیافته

اثبات درستی الگوریتم

نتیجه‌گیری

نتیجه‌گیری

فهرست منابع

پیوست‌ها


دانلود با لینک مستقیم


دانلود پایان نامه تشخیص بن بست در سیستم‌های توزیع شده(94 صفحه قیمت 500 تومان فرمت word)