فایلکو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

فایلکو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

پوشش‌های لایه نازک، کاربرد خواص مکانیکی و روش‌های اندازه‌گیری

اختصاصی از فایلکو پوشش‌های لایه نازک، کاربرد خواص مکانیکی و روش‌های اندازه‌گیری دانلود با لینک مستقیم و پر سرعت .

پوشش‌های لایه نازک، کاربرد خواص مکانیکی و روش‌های اندازه‌گیری


پوشش‌های لایه نازک، کاربرد خواص مکانیکی و روش‌های اندازه‌گیری

پوشش‌های لایه نازک، کاربرد خواص مکانیکی و روش‌های اندازه‌گیری

31 صفحه در قالب word

 

 

 

 

خواص مکانیکی لایه ها

ترکیب عمومی (طرح عمومی)

رفتار مکانیکی لایه ها از دو دیدگاه اصلی دارای اهمیت است. در اصل،‌ مطالعه و فهمیدن چنین رفتارهایی می‎تواند منجر به درک بهتر ما از خواص تودة مواد شود. در عمل کار رضایت بخش بسیاری از قطعات لایه ای به شکل و ترتیب قرار گرفتن لایه های پایدار- که می‎توانند در برابر تاثیرات محیط زیست تاب بیاورند- بستگی بحرانی دارد.

مانند خیلی از خواص دیگر لایه ها، خواص مکانیکی لایه ها هم به چند تایگی معمولی فاکتورهای وابسته در آماده سازی آنها بستگی دارد. به دلیل مشکلات تجربی و محدودیت های موجود در آزمایشها، اکثریت کار انجام شده روی خواص مکانیکی روی لایه های چند بلوری انجام گرفته و این به خاطر ساختار مختلط بیشتر لایه ها است. مطالعاتی دربارة برآراستی لایه ها انجام شده، اما طبیعت اندازه گیری دقیق،‌ که مستلزم استخراج اطلاعات خواص مکانیکی است،‌ و عدم قطعیت مشکلاتی را در این مطالعات ایجاد می‌کند.

بیشتر مطالعات انجام شده دربارة لایه های فلزی بوده اند و به مواد دی الکتریک که در قطعات الکتریکی و اپتیکی گوناگون اهمیت دارند نیز توجه شده است. اندازه گیری ها شامل فشار (تنش) و کرنش، خزش، رفتار قالب پذیری و نرمی، قدرت شکست و در پایین ترین سطح و کمترین حد شامل سختی می‎شوند. مدلهای تئوری گوناگونی پیشنهاد شده اند که اگرچه در این مرحله حتی در جزئیات با تجربه توافق دارند ولی آنها را در نظر نمی گیریم. با وجود این، یک اصول عمومی وجود دارند که به عنوان راهنما برای کارهای بعدی بکار گرفته می‎شوند.

وقتی لایه ها با تبخیر گرمایی، یا با تجربه بخار روی یک بستر گرمایی، شکل می گیرند، آنگاه اگر ضریب انبساط لایه ها و بستر گرمایی یکسان باشد وقتی سیستم تا دمای اتاق سرد می شود، یک فشار گرمایی ایجاد شده و پیشرفت می‌کند. این اثر- که در بسیاری از موارد اتفاق می افتد- خودش را به شکل جداسازی لایه ها از سطح به وضوح نشان می‎دهد. در حقیقت هنگامی که بستر گرمایی در دمای اتاق است، فشار گرمایی ذخیره شده در لایه های رسوبی رابا هیچ وسیله ای نمی توان آشکار کرد. دمایی که لایه ها در آن شکل می گیرند، از آنجایی که مفهوم بد تعریفی است، ممکن است با دمای بستر گرمایی تفاوت داشته باشد. مخصوصا وقتی که اتمهای چگالیده با یک سرعت بالای گرمایی وارد می‎شوند: اثر «دما»ی لایه های چگالیده به عاملهای تعادل که گرمای مادة چگال را کنترل می‌کنند بستگی دارد و این عاملها معمولاً به سختی قابل تشخیص هستند. قستمی از دمای سطح بستر گرمایی توسط تابشهای دریافت شده از منبع تعیین می‎شود و قسمتی از آن را گرمای نهانی که توسط لایه های چگالیده داده شده تعیین می‌کند. وقتی ضخامت لایه های فلزی افزایش پیدا می کند، کسر بزرگی از انرژی گرمایی که از بستر گرمایی تابش می کند ممکن است بازتابیده شود. بعلاوه وقتی ثابتهای اپتیکی لایه های بسیار نازک با ضخامت به سرعت (و اغلب با رفتاری بسیار پیچیده) تغییر می‌کنند این اثر به دشواری قابل تشخیص است. قبل از بحث کردن دربارة جزئیات این اثر،‌ می‎پردازیم به روشهای تجربی ای که برای مطالعه خواص مکانیکی لایه های نازک به کار می روند.

2-5) تکنیک های تجربی

الف) اندازه گیری تنش و کرنش

اندازه گیری تنش (فشار) در لایه ها معمولاً با تکنیک باریکه- خمش انجام می‎شود. تکنیکی که در آن لایه ها روی یک باریکة مستطیلی نازک ته نشین شده و رسوب می‌کنند. در اندازه گیری انحرافهای کوچکی که در تداخل سنجی،‌ ظرفیت و نظم و ترتیب الکترومکانیکی به کار گرفته شده رخ می‎دهد هر تغییری می‎تواند در روشها ایجاد شود. در بیشتر موارد حل عمومی برای خمش باریکة مرکب از دو ماده با خواص الاستیکی متفاوت، تا وقتی که ضخامت لایه در برابر ضخامت باریکه کم است، مورد نیاز نمی باشد.

اگر لایه ها به طور ثابتی مقید به بستر گرمایی باشند و اگر شارش نرم و قالب پذیری در سطح میانی به وجود نیاید آنگاه برای ضخامت باریکه (d) ، مدول یانگ (Y)، نسبت پواسون () و فشار (S) در ضخامت لایه (t) داریم:

(1-5)                              

وقتی که  شعاع انحنای فشار باریکة اولیه،‌ مستقیم فرض شود.

اندازه گیری مستقیم کرنش با متد بارگیری مستقیم علیرغم مشکلات زیادی که وابسته به زیاد شدن لایه ها است، بکار می رود. طرح یکی از سیستمهایی که استفاده می‎شود در شکل (1-5) نشان داده شده است (این طرح در اصل برای مطالعات تاره ها طراحی شده بود ولی بعدها برای کار لایه ها تعدیل شد).

 

ممکن است هنگام انتقال از فایل ورد به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل است

متن کامل را می توانید در ادامه دانلود نمائید

چون فقط تکه هایی از متن برای نمونه در این صفحه درج شده است ولی در فایل دانلودی متن کامل همراه با تمام ضمائم (پیوست ها) با فرمت ورد word که قابل ویرایش و کپی کردن می باشند موجود است


دانلود با لینک مستقیم


پایان نامه مطالعه سنتز و خواص نانوگویچه‌های حساس به دما با پوسته آبدوست

اختصاصی از فایلکو پایان نامه مطالعه سنتز و خواص نانوگویچه‌های حساس به دما با پوسته آبدوست دانلود با لینک مستقیم و پر سرعت .

پایان نامه مطالعه سنتز و خواص نانوگویچه‌های حساس به دما با پوسته آبدوست


پایان نامه مطالعه سنتز و خواص نانوگویچه‌های حساس به دما با پوسته آبدوست

 

 

 

 

 

 



فرمت فایل : WORD (قابل ویرایش)

تعداد صفحات:114

پایان‌نامه کارشناسی ارشد
مهندسی پلیمر- صنایع پلیمر

فهرست مطالب:
فصل اول:    1
مروری بر منابع    1
1-1- پلیمریزاسیون رادیکال آزاد کنترل‌شده/ زنده    2
1-1-1- مقدمه    2
1-1-2- پلیمریزاسیون کنترل‌شده/"زنده" از طریق روش NMP    3
1-1-3- پلیمریزاسیون کنترل‌شده/"زنده" از طریق روش ATRP    9
1-1-4- پلیمریزاسیون کنترل‌شده/ "زنده" از طریق روش RAFT    12
1-1-5- پلیمریزاسیون کاتالیستی انتقال زنجیر برگشت‌پذیر (RTCP)    19
1-2- استفاده از پلیمریزاسیون کنترل‌شده/"زنده" برای تهیه نانوکامپوزیت‌ها    20
1-2-1- روش "پیوند به"    21
1-2-2- روش پلیمریزاسیون آغازشده از سطح    23
1-2-3- روش "پیوند به واسطه"    33
1-3- پلیمرهای حرارت پاسخگو    35
1-3-1- مقدمه    35
1-3-2- روش های بررسی پلیمرهای حرارتپاسخگو در محلول    37
1-4- پلی‌آکریلیکاسید    40
1-4-1- مقدمه    40
1-4-2- پلیمریزاسیون مستقیم آکریلیک‌اسید    43
1-4-3- کوپلیمرهای آکریلیک‌اسید    43
1-5- پلی(2- هیدروکسی‌اتیل‌متاکریلات)    46
فصل دوم:    49
مواد، روش‌ها و تجهیزات    49
2-1- مقدمه    50
2-2- مواد    50
2-2-1- مونومرها    51
2-2-2- نانوذره    51
2-2-3- حلال‌ها    51
2-2-4- شروع‌کننده    52
2-2-5- اصلاح‌کننده‌های سطحی    52
2-2-6- عامل RAFT    53
2-2-7- سایر مواد    53
2-3- تجهیزات    54
2-3-1- سامانه صاف‌کردن مخلوط‌ها در فرآیندهای مختلف    54
2-3-2- راکتور    54
2-3-3- آون    55
2-3-4- سانتریفیوژ    55
2-3-5- اولتراسونیکاسیون    56
2-4- آنالیزها و دستگاه‌های شناسایی    57
2-4-1- طیف سنجی مادون قرمز تبدیل فوریه    57
2-4-2- وزن‌سنجی حرارتی    57
2-4-3- پراکنش نور دینامیکی    58
2-4-4- میکروسکوپ الکترونی عبوری    58
2-4-5- میکروسکوپ الکترونی روبشی    59
2-4-6- رزونانس مغناطیسی هسته    59
2-5- اصلاح سطح نانوذرات سیلیکا    59
2-5-1- آمین‌دارکردن سطح نانوذرات    59
2-5-2- برم‌دارکردن سطح نانوذرات (نشاندن شروع‌کننده ATRP)    60
2-5-3- تبدیل شروع‌کننده ATRP به عامل RAFT    62
2-6- واکنش‌های پلیمریزاسیون    63
2-6-1- استفاده از روش ATRP    63
2-6-2- استفاده از روش پلیمریزاسیون RAFT    65
2-7- شبکهایکردن پلیآکریلیکاسید    67
2-8- حذف هسته سیلیکا و تهیه نانوذرات کروی توخالی شاخه‌دار    68
فصل سوم    69
نتایج و بحث    69
3-1- تحلیل دادههای FTIR    70
3-1-1- نشاندن گروه‌های آمینی و شروع‌کننده ATRP روی سطح نانوذرات    70
3-1-2- پلیمریزاسیون متیل‌اکریلات با روش ATRP    71
3-1-3- افزودن قطعه  PHEMAبه PMA پیوندخورده به سطح با پلیمریزاسیون ATRP    71
3-1-4- هیدرولیز PMA و تبدیل آن به PAA    72
3-1-5- پلیمریزاسیون آکریلیکاسید با روش RAFT    73
3-1-6- سنتز قطعه PHEMA با روش RAFT    73
3-2- تحلیل دادههای آزمون TGA    74
3-3- بررسی ساختار نانوذرات با استفاده از تصاویر TEM    76
3-3-1- ساختارنانوذرات سنتز شده به روش ATRP    76
3-3-2- ساختارنانوذرات سنتز شده به روش RAFT    77
3-4- بررسی نانوذرات با استفاده از تصاویر SEM    78
3-4-1- بررسی نانوذرات تشکیل شده به روش ATRP    78
3-4-2- بررسی مورفولوژیکی نانوذرات تشکیل شده به روش RAFT    79
3-5- تحلیل داده‌های طیف‌سنجی 1H-NMR    82
نتیجه گیری    85
مراجع    87

 

چکیده
هدف این پروژه سنتز نانوکپسول‌های پلیمری آبدوست با پوسته شبکه‌ای است که قادر به حفظ شکل گویچه‌ای خود هستند. این نانوکپسول‌ها حامل‌های هوشمند حساس‌دوتایی با پوسته پلی‌آکریلیک‌اسید حساس به pH و پوسته پلی(2- هیدروکسی‌اتیل‌متیلاکریلات) حساس به دما با دمای انتقال فاز نزدیک به دمای بدن هستند.برای این کار، ابتدا نانوذرات سیلیکا در طی 2 مرحله با 2 عامل اصلاح‌کننده سطحی متفاوت اصلاح شدند و شروع‌کننده پلیمریزاسیون رادیکالی انتقال اتم (ATRP) روی سطح ذرات پیوند خورد. سپس، با استفاده از تکنیک ATRP پلیمریزاسیون مونومر متیل‌اکریلات روی سطح نانوذرات انجام گرفت و با استفاده از ماکروشروع‌کننده‌های حاصل،پلی(2- هیدروکسی‌اتیل‌متاکریلات) به عنوان پوسته دوم سنتز شد. هیدرولیز پوسته پلی‌متیل‌اکریلات به منظور ایجاد پلی‌اکریلیک‌اسید و سپس شبکه‌ای‌شدن این پوسته به منظور حفظ ساختار انجام و بعد از حذف هسته سیلیکا ساختار مورد نظر حاصل شد. در روش دوم، برای استفاده از تکنیک پلیمریزاسیون RAFT جهت ایجاد نانوذرات با پوسته‌های پلیمری، از واکنش عامل RAFT بیس‌تیوبنزویل‌دی‌سولفاید با نانوذرات اصلاح‌شده استفاده و شروع‌کننده ATRP به عامل انتقال پلیمریزاسیون RAFT تبدیل شد. سپس، به ترتیب پلیمریزاسیون‌های آکریلیک‌اسید و
2- هیدروکسی‌اتیل‌متاکریلات بر روی سطح نانوذرات انجام شدند.به منظور ایجاد ساختاری پایدار، پوسته اول یعنی پلی‌آکریلیک‌اسید شبکه‌ای و سپس، به منظور ایجاد نانوکپسول‌های پلیمری، هسته سیلیکایی نانوذرات توسط HF خارج‌ شد.
از آزمون FTIR برای شناسایی گروه‌های عاملی عوامل اصلاح و نیز پلیمرهای پیوندخورده به سطح نانوذرات استفاده شد. همچنین آزمون 1H-NMR برای شناسایی پلیمرهای سنتزشده به کار رفت. آزمون TGA برای تعیین کمی مقادیر اصلاح‌کننده‌ها و پلیمرهای پیوندخورده به سطح وآزمون SEM به منظور بررسی ساختار ظاهری نانوذرات خالص و نیز نانوذرات اصلاح‌شده استفاده شد. نتایج ساختار کروی نانوذرات در همه نمونه‌ها و و نیز افزایش قطر نانوذرات پس از هر مرحله پلیمریزاسیون را به خوبی نشان داد. تصاویر TEM ساختار هسته- پوسته نانوذرات پس از پلیمریزاسیون و نیز ساختار کپسولی (میان‌تهی) را پس از فرآیند خارج‌سازی هسته سیلیکا به خوبی نشان می‌دهند.

کلیدواژه‌ها: ATRP، RAFT، هسته- پوسته، نانوکپسول، پلی‌اکریلیک‌اسید،
پلی(2- هیدروکسی‌اتیل‌متاکریلات)


دانلود با لینک مستقیم


اثر پارامترهای سنتز بر روی خواص ساختاری و اپتیکی نانوساختارهای اکسید تیتانیوم

اختصاصی از فایلکو اثر پارامترهای سنتز بر روی خواص ساختاری و اپتیکی نانوساختارهای اکسید تیتانیوم دانلود با لینک مستقیم و پر سرعت .

اثر پارامترهای سنتز بر روی خواص ساختاری و اپتیکی نانوساختارهای اکسید تیتانیوم

مقدمه ای کامل و جامع و بسیار مناسب برای پایان نامه

حاصل از ترجمه مقالات معتبر خارجی - 43 صفحه فایل word با فهرست مطالب، جدولها و شکلها و با رعایت تمام نکات نگارشی

payannameht@gmail.com

فایلهای مرتبط :

خواص و کاربردهای نانو ذرات اکسید تیتانیوم

روشهای سنتز نانو ذرات اکسید تیتانیوم و لایه های نازک اکسید تیتانیوم

 

مقدمه

در کاربردهای مختلف این مواد، روش­های سنتز نانوساختارها و پارامترهای موثر در هر روش نقش بسیار مهمی دارند. در این فصل به بررسی و مطالعه اثر پارامترهای مهم در سنتز نانوذرات و لایه­های نازک اکسید تیتانیوم به روش سل ژل و اسپری پایرولیزیز می­پردازیم.

 

 

3-1- بررسی پارامترهای موثر بر روی خواص نانوساختارهای اکسید تیتانیوم تهیه شده به روش سل- ژل

3-1-1- نقش عامل کمپلکس­ساز

بطور کلی با کنترل فرایند تبدیل سل به ژل می­توان اندازه و شکل ذرات را کنترل کرد .در روش سل ژل اگر تعداد بیشتری از یون­های فلزی در محلول اولیه توسط عامل کمپلکس­ساز به کی­لیت تبدیل شوند، در نهایت ژل همگن­تری خواهیم داشت. بنابراین نوع وغلظت عامل کمپلکس­ساز در سنتز نانوساختارهایی یکنواخت مهم خواهد بود. در مقالاتی که گزارش خواهیم کرد، نقش این پارامتر مهم را بر روی خواص ساختاری نانوساختارهای دی­اکسید تیتانیوم بررسی می­کنیم.

3-1-1-1- سنتز نانوذرات تیتانیا با حضور عامل کمپلکس­ساز مختلف به روش سل­ژل

یوکاوا[1]و همکارنش توانستند با پیش­ماده تیتانیوم تترا ایزوپروپکساید (TTIP) در دمای پایین، نانوذرات دی­اکسیدتیتانیوم را با فاز آناتاس و روتایل سنتز کنند [1]. آن­ها نشان دادند که حضور گروه­های هیدروکسیل (-OH) در عامل­های کمپلکس­ساز واکنش­های هیدرولیز را کنترل کرده و با افزایش تعداد اتم­های کربن و گروه­های  OHبرهمکنش بین عامل کمپلکس­ساز و یون­های Ti+4 افزایش می­یابد. در این تحقیق، از چهار پلی­ال متفاوت بعنوان عامل کمپلکس­ساز استفاده کرده و اثر تغییر غلظت آن­ها را روی گذار فاز، مورفولوژی و اندازه ذرات بررسی کرده­اند.

 در اینجا نتایج بدست آمده از عامل­های کمپلکس­ساز اتیلن­گلیکول[2][HOCH2CH2OH] و دی­مانیتول[3] [HOCH2CH(OH)CH(OH)CH(OH)CH(OH)CH2OH] را گزارش خواهیم کرد.

- روش تهیه نانوذرات TiO2

30 درصد وزنی محلول H2O2 به 10 میلی لیتر از محلول 1 مولار اتانول حاویTTIP  که نسبت مولی آن با آب اکسیژنه برابر 12:1 است اضافه شده است. سپس محلول بدست آمده، هر بار با 100 میلی لیتر اتیلن گلیکول و دی­مانیتول رقیق شده است. غلظت پلی­ال­ها از mol/l0 تا 5 تغییر داده شده­اند. محلول در دمای 95 به­مدت 24 ساعت حرارت­دهی شد. سپس برای حذف ترکیبات آلی، فرآیند پراکنده­سازی ژل در 500 میلی لیتر آب مقطر در دمای 75 برای 1 ساعت انجام شده است. عملیات شستشو ژل تا 3 بار تکرار شد، سپس ژل را از آب جدا کرده و در دمای95 برای 12 ساعت در اتمسفر قرار داده­اند تا خشک گردد.

طیف­های پراش پرتو X (شکل 3-1-الف) در غیاب اتیلن­گلیکول، حضور ترکیبی از فاز آناتاس و روتایل را در نمونه­های تهیه شده نشان می­دهند. با افزایش غلظت اتیلن گلیکول از شدت پیک­های متعلق به فاز روتایل کاسته...

.

.

 

 

 

فهرست مطالب

عنوان                                                                                           صفحه

 

 

فصل سوم: مطالعه پارامترهای سنتز بر روی خواص ساختاری و اپتیکی نانوساختارهای اکسید تیتانیوم   1

3-1- بررسی پارامترهای موثر بر روی خواص نانوساختارهای اکسید تیتانیوم تهیه شده به روش سل- ژل.. 1

3-1-1- نقش عامل کمپلکس ساز 1

3-1-1-1- سنتز نانوذرات تیتانیا با حضور عامل کمپلکس ساز مختلف به روش سل ژل.. 2

3-1-1-2- مقایسه عملکرد عامل های کمپلکس ساز در تهیه لایه های نازک TiO2 به روش سل ژل.. 5

3-1-2- نقش حلال.. 13

3-1-3- اثر دمای بازپخت... 19

3-1-4- تغییر نسبت آب به آلکوکسید. 23

3-1-5- نوع کاتالیزور 26

3-1-6- اثر pH.. 27

3-2- بررسی پارامترهای موثر بر روی خواص لایه های نازک اکسید تیتانیوم تهیه شده به روش اسپری پایرولیزیز  30

3-2-1- اثر روش لایه نشانی (اسپری پایرولیزیز و مگنترون اسپاترینگ) بر روی خواص ساختاری، اپتیکی و فوتوکاتالیستی TiO2 30

3-2-2- بررسی خواص لایه های نازک تهیه شده به روش اسپری پایرولیزیز با تغییردمای بستر و تغییر زیرلایه  34

 مراجع. 38

 

 

 

 

 

فهرست جدول­ها

 

عنوان و شماره                                                                              صفحه

 

جدول3-1: ترکیب فاز لایه ها بصورت تابعی از دما برای هر عامل کمپلکس ساز (با استفاده از داده های رامان) 10

جدول3-2: ترکیب فاز لایه ها بصورت تابعی از دما برای هر عامل کمپلکس ساز و اندازه ذرات محاسبه شده با فرمول دبی-شرر.(با استفاده از داده های XRD) 11

جدول3-3: ترکیب و شکل ظاهری رسوب تیتانیا با حلال های مختلف... 15

جدول3-4: میانگین اندازه بلورک ها با رابطه شرر 17

جدول3-5: نتایج اندازه گیری های XRD و تعیین اندازه بلورک ها با رابطه شرر 22

جدول3-6: مساحت سطح موثر نانوذرات تیتانیا در دماهای بازپخت مختلف... 23

جدول3-7: مساحت سطح موثر پودر تیتانیا در درجه هیدرولیز متفاوت با کاتالیزور مختلف 25

جدول3-8: رابطه بین تعدادی از خواص فیزیکی فیلم  TiO2و پارامترهای لایه نشانی به روش اسپاترینگ... 32

جدول3-9: رابطه بین تعدادی از خواص فیزیکی فیلم  TiO2و پارامترهای لایه نشانی به روش اسپری پایرولیزیز 32

جدول3-10: شرایط لایه نشانی و خواص فیزیکی لایه های آناتاس بر روی بستر کوارتز و (100) Si 35

 

فهرست شکل­ها

 

عنوان                                                                                           صفحه

 

 

شکل3-1: طیف XRD پودر تیتانیا تهیه شده در دمای K 368 به مدت h 24 با عامل کمپلکس ساز الف: اتیلن گلیکول در غلظت (a) mol/l0، (b) mol/l 1، (c) mol/l2 (d) mol/l5. 4

شکل3-2: حضور نسبی فاز آناتاس بر حسب غلظت های عامل کمپلکس ساز. ○: دی مانیتول، ∆: اتیلن گلیکول  4

شکل3-3: مساحت سطح موثر (SBET) نانوپودر TiO2 برحسب غلظت پلی ال. ○: دی مانیتول، : اتیلن گلیکول.. 5

شکل3-4: تصاویر FE-SEM با عامل کمپلکس ساز دی مانیتول در غلظت های.. 5

شکل3-5: رابطه بین غلظت دی مانیتول و مقدار کربن.. 6

شکل3-6: طیف IR فیلم TiO2 در دماهای مختلف با عامل (الف) DEA، (ب)  AcAc. 8

شکل3-7: طیف IR فیلم TiO2 در دماهای مختلف با عامل DEA+AcAc. 9

شکل3-8: طیف رامان لایه های TiO2 در دماهای مختلف با عامل (a)AcAc ، (b)PEG + AcAc. نماد A متعلق به فاز آناتاس و R متعلق به فاز روتایل   10

شکل3-9: طیف های XRD فیلم های TiO2 با عامل های کمپلکس ساز مختلف در دمای (a) C˚500 و (b) C˚800  11

شکل3-10: طیف IR محلول اولیه شامل عامل کمپلکس ساز (1) DEA، (2) TEA، (3) AcAc، (4) H3L و (5) HAC 12

شکل3-11: تصاویر  SEMو مورفولوژی سطوح لایههای نازک با عامل کمپلکس ساز (a) DEA، (b) TEA، (c) AcAc، (d) HAC و (e) H3L. با حلال (a-e) EtOH و (f) n- butanol 12

شکل3-12: استیل استن در دو شکل شیمیایی.. 15

شکل3-13: شکل گیری کی لیت بین استیل استن و تیتانیوم ایزوپروپکساید. 15

شکل3-14: طیف FTIR رسوب تیتانیا (a) در حضور عامل کمپلکس ساز 16

شکل3-15: طیف XRD رسوب تیتانیا بدون عملیات حرارتی (a) با حلال استن (b) با حلال هگزان (c) باحلال استن بدون عامل کمپلکس ساز. با انجام عملیات حرارتی در دمای C˚450 برای 1 ساعت (d) با حلال استن 17

شکل3-16: تصاویر SEM رسوب تیتانیا با حلال (a) استن، (b) بوتانول.. 18

شکل3-17: تصاویر SEM رسوب تیتانیا ، با حلال (a) تولوئن و (b) هگزان، با بزرگنمایی زیاد 18

شکل3-18: عکس های TEM (a) سل کلوئیدی با ذرات TiO2، (b) ژل بدون آب (c) ژل خشک بازپخت شده در دمای C˚400 برای 2 ساعت 20

شکل3-19: الگوی پراش پرتو x اکسید تیتانیوم (a) قبل و بعد از بازپخت در دمای (b) C˚400، (c) C˚500، (d) C˚600 و (e) C˚700 21

شکل3-20 (a-d): طیف های  XRDنانوپودر تیتانیا بازپخت شده در دماهای مختلف با کاتالیزور HCL و نسبت آب 1x= (a)، 2x= (b)، 3x= (c)، 4x= (d). نماد A متعلق به فاز آناتاس و R متعلق به فاز روتایل 23

شکل3-21: تغییر اندازه بلورک ها با افزایش دمای بازپخت در (a) 2x= و (b) 4x= 23

شکل3-22: تغییر اندازه بلورک ها با افزایش دمای بازپخت دردرجه هیدرولیز مختلف 24

شکل3-23: تصاویر  TEMنانوذرات تیتانیا (a) سنتز شده در 1x= (b) سنتز شده در 4x= (c) بازپخت شده در دمای C˚400 برای 2 ساعت در 4x= 25

شکل3-24: طیف  XRDپودر تیتانیا در دماهای بازپخت مختلف و با کاتالیزور استیل استن. نماد A متعلق به فاز آناتاس و R متعلق به فاز روتایل 26

شکل3-25: طیف XRD پودر TiO2 بازپخت شده در دمای C˚400 برای 2 ساعت در pH (a)2، (b)4، (c)6 27

شکل3-26: عکس های  SEMپودر TiO2 بازپخت شده در دمای C˚400 برای 2 ساعت در pH (a)2، (b)4، (c)6 27

شکل3-27: طیف XRD پودر TiO2 بازپخت شده در دمای C˚800 برای 2 ساعت در pH (a)2، (b)4، (c)6 28

شکل3-28: عکس های  SEMپودر TiO2 بازپخت شده در دمای C˚800 برای 2 ساعت در pH (a)2، (b)4، (c)6 28

شکل3-29: طیف XRD فیلم TiO2 تهیه شده به روش (a) اسپاترینگ (b) اسپری پایرولیزیز 30

شکل3-30: طیف عبور اپتیکی فیلم  TiO2سنتز شده به روش (a) اسپاترینگ (b) اسپری پایرولیزیز 31

شکل3-31: تغییرات جذب متیلن آبی (ABS ) روی سطح فیلم TiO2 بر حسب پارامترهای لایه­نشانی در دو روش اسپاترینگ و اسپری پایرولیزیز 32

شکل3-32: درصد عبور لایه های TiO2 آغشته به متیلن آبی بصورت تابعی از زمان نوردهی در دو روش اسپاترینگ و اسپری پایرولیزیز  32

شکل3-33: طیف XRD فیلم TiO2 در دمای بستر (a) C˚250، (b) 400، (c) 500 . 34

شکل3-34: تصاویر AFM (a,b) C˚250Ts=، (c,d) C˚400Ts=، (e,f) C˚500Ts= 35

شکل3-35: تصویر  SEMلایه های TiO2 تهیه شده در دمای بستر (a) C˚250، (b) 400، (c) 500 ........ 36

شکل3-36: ضریب جذب و گاف غیرمستقیم لایه های نشانده شده روی بستر کوارتز 36


دانلود با لینک مستقیم


دانلود پایان نامه دندانپزشکیبررسی اثر یک UDMA جدید بر خواص مکانیکی کامپوزیت دندانی آزمایشی

اختصاصی از فایلکو دانلود پایان نامه دندانپزشکیبررسی اثر یک UDMA جدید بر خواص مکانیکی کامپوزیت دندانی آزمایشی دانلود با لینک مستقیم و پر سرعت .

دانلود پایان نامه دندانپزشکیبررسی اثر یک UDMA جدید بر خواص مکانیکی کامپوزیت دندانی آزمایشی


دانلود پایان نامه دندانپزشکیبررسی اثر یک UDMA جدید بر خواص مکانیکی کامپوزیت دندانی آزمایشی

لینک پرداخت و دانلود *پایین مطلب*

 

فرمت فایل:Word (قابل ویرایش و آماده پرینت)

 

تعداد صفحه:70

فهرست مطالب

فهرست مطالب

عنوان                                                                                                                         صفحه

 

فصل اول: مقدمه

1-1- دلایل انتخاب موضوع                                                                            2

1-2- بیان مسأله                                                                                         4

1-3- تعریف واژه های عملیاتی                                                                       7

 

فصل دوم: بررسی پیشینه پژوهش

2-1- تاریخچه                                                                                           10

2-2- مروری بر مقالات                                                                               14

 

فصل سوم: اهداف و فرضیات

3-1- هدف کلی                                                                                          27

3-2- اهداف اختصاصی                                                                               27

3-3- فرضیات                                                                                           28

 

فصل چهارم: مواد و روشها

4-1- متغیرهای تحقیق و مقیاس سنجش متغیرها                                               30

4-2- جامعه مورد بررسی، تعداد نمونه                                                           32

4-3- طرح جمع آوری اطلاعات                                                                      32

4-4-طرح تجزیه و تحلیل آماری                                                                    36

4-5- مسائل اخلاقی و انسانی طرح                                                                 36

4-6- روش اجرای تحقیق                                                                             37

 

فصل پنجم: یافته ها

فصل ششم: بحث و نتیجه گیری

6-1- بحث                                                                                                49

6-2- نتیجه گیری                                                                                       56

6-3- مشکلات و پیشنهادات                                                                          57

 

منابع                                                                                                      58

 

ضمیمه                                                                                                    64

 

فهرست جداول

عنوان                                                                                                                         صفحه

جدول 4-1- ساختمان شیمیایی فیلر شیشه                                                       35

جدول 5-1- مقادیر fracture toughness، استحکام خمشی و مدول خمشی نمونه های مختلف        39

 

فهرست اشکال

عنوان                                                                                                                         صفحه

شکل 4-1- قالب استفاده شده برای آزمون Fracture toughness                              34

شکل 4-2- قالب استفاده شده برای آزمون استحکام خمشی                                 34

شکل 4-3- روش اندازه گیری خواص به روش 3-point bending                            34

شکل 4-4- فیلر شیشه                                                                                 40

شکل 4-5- مخلوط رزینهای Bis-GMA/TEGDMA/UDMA                                  40

شکل 4-6- مراحل تهیه کامپوزیت                                                                  40

 

شکل 5-1- چغرمگی شکست نمونه های شامل مقادیر مختلف IP-UDMA                 41

شکل 5-2- استحکام خمشی نمونه های شامل مقادیر مختلف IP-UDMA                 41

شکل 5-3- مدول خمشی نمونه های شامل مقادیر مختلف IP-UDMA                     41

شکل 5-4- ارزیابی SEM سطح شکست با بزرگنمایی 8000                                  43

شکل 5-5- ارزیابی SEM سطح شکست با بزرگنمایی 100                                    43

شکل 5-6- ارزیابی سطح شکست توسط استریومیکروسکوپ                               43

شکل 5-7- ارزیابی سطح شکست توسط استریومیکروسکوپ                               43

شکل 5-8- منحنی نیرو به جابجایی برای آزمون چغرمگی شکست                         44

شکل 5-9- منحنی نیرو به جابجایی برای آزمون استحکام خمشی                          44


عنوان: بررسی اثر یک UDMA جدید برخواص مکانیکی کامپوزیت دندانی آزمایشی

 

چکیده:

اهداف: هدف از این مطالعه بررسی اثر UDMA جدید بر خواص مکانیکی کامپوزیت دندانی آزمایشی و مقایسه آن با کامپوزیتهایی که است تنها براساس مونومرهای متداول بکار رفته در کامپوزیتهای دندانی (BisGMA/TEGDMA) می‌باشند.

روشها: یک ماتریکس رزینی حاوی 60% وزنی Bis-GMA و 40% وزنی TEGDMA تهیه شد. 5/0% وزنی کامفورکینون و 5/0% وزنی DMAEMA به عنوان آغازگر در سیستم حل شدند. سپس IP-UDMA با غلظتهای 5، 10، 20 و 30 phr به پایه رزینی در پنج گروه آزمایشی افزوده شدند. فیلرهای شیشه سایلنیزه با متوسط اندازه ذرات 4-2 میکرون به پایه رزینی اضافه شدند. 8 نمونه برای هر گروه آماده شد. بطوریکه کامپوزیتهای آزمایشی داخل قالبهای تست مربوطه قرار داده شده و به نمونه‌ها از هر سمت 3 بار بصورت پوششی هر بار به مدت 40 ثانیه نور تابانده شد. لبه‌های نمونه‌ها توسط کاغذ سمباده صاف شدند و در دمای محیط به مدت 24 ساعت قرار گرفتند.

برای اندازه‌گیری چغرمگی شکست (Fracture toughness) و استحکام خمشی (Flexural strenght)، تست خمش سه نقطه‌ای با روشهای استاندارد انجام گرفت.

نتایج توسط آزمونهای آماری ANOVA و Tukey's test بررسی شدند.

یافته­ها: گروه 10% UDMA بالاترین میزان Fracture toughness، و گروه 5% UDMA بالاترین استحکام خمشی را بین تمامی گروهها داشتند.

اهمیت: تهیه کامپوزیت دندانی با خواص بهتر یکی از اهداف دندانپزشکی ترمیمی میباشد. یافته ها پیشنهاد می کنند که افزودن UDMA جدید باعث خواص مکانیکی برتر در کامپوزیت­های دندانی می شود.

واژه­های کلیدی: خواص مکانیکی، کامپوزیت دندانی، UDMA، Bis-GMA و TEG-DMA

 

 

 

 

به نام یگانه هستی بخش


 

 

 

Effect of a novel uerthane dimethacrylate on the mechanical properties of an experimental dental composite

 

 

Abstract  Objectives. The aim of this study was to investigate the influence of a new UDMA on the mech


دانلود با لینک مستقیم