دانلود نقشه زمین شناسی فراش بند در مقیاس 1:100000، با کیفیت عالی و در فرمت JPG
دانلود نقشه زمین شناسی فراش بند
دانلود نقشه زمین شناسی فراش بند در مقیاس 1:100000، با کیفیت عالی و در فرمت JPG
دانلود مقاله با موضوع تحلیل لرزه ای دیوارهای آب بند بتن پلاستیک در سدهای خاکی
نوع فایل : PDF
تعداد صفحات : 6
شرح محتوا
در این مقاله رفتار دینامیکی دیوارهای آب بند بتن پلاستیک در سدهای خاکی مورد بررسی قرار گرفته است. تحلیلهای انجام یافته در مرحله پایان ساخت سد و در شرایطی که دریاچه سد خالی است، صورت پذیرفته و رفتار مصالح سد، پیسد و دیوار آب بند بتن پلاستیک بطور ایدهآل الاستیک خطی فرض شده است. جهت شبیه سازی بارگذاری زلزله از موج سینوسی با دامنه نوسانات g4/0 مدت زمان 5 ثانیه و فرکانس نوسانات.5/2 هرتز استفاده شده است. نتایج تحلیلهای انجام یافته با نرم افزار Plaxis 7.2 نشان می دهد که حداکثر تنشهای کششی و برشی بیشینه دیوار در مرز بین هسته و پی سد ایجاد می شود و با سخت تر شدن مصالح دیوار میزان این تنش ها در دیوار افزایش می یابند
سدهای خاکی، دیوار آب بند، بتن پلاستیک، بارگذاری زلزله، حداکثر تنشهای کششی و برشی بیشینه
بیش ازیکصدسال پیش تا کنون جریان حول اجسام جریان بند ( مانع) با سطح مقطع دایره ای ومربعی، توجه بسیاری ازمحققین را به خودجلب کرده است. موضوع جریان حول این اجسام وپدیده پخش گردابه ناشی ازآن به خاطر وجودکاربردهای عملی درمهندسی ازاهمیت زیادی برخورداراست ؛ ازجمله کاربردهای عملی این نوع جریان ها، می توان به جریان حول دودکش ها ، ساختمانها وسازه های بلند، سازه های دریایی، پلهای معلق، بال هواپیما، پروانه کشتی ودکل ها وبسیاری ازموارددیگراشاره نموداین نوع جریان اغلب شامل پدیده های پیچیده ای ازقبیل جدایش جریان ، ویک، جریان های برشی ، جریان گردابه ای وپخش گردابه هستند. دراعداد رینولدزبسیارکم ، جریان حول این گونه اجسام کاملا" به آنها چسبیده وجدایش رخ نمی دهد باافزایش عددرینولدز، جریان ازسطح آنها جدا شده ویک جفت گردابه متقارن درپشت آنها تشکیل می شودکه با افزایش عددرینولدز،ابعادگردابه ها نیزبزرگترمی شود. با افزایش بیشترعددرینولدزگردابه ها حالت نوسانی پیدا کرده ودرجریان پخش می شوددراین حالت جریان ازحالت دائم به حالت غیردائم تبدیل می شود. درحالیکه این گونه هندسه ها ازلحاظ مکانیک سیالات به طور وسیعی توسط محققین بررسی شده اند مساله انتقال حرارت دراین هندسه ها به آن گستردگی بررسی نشده ونیازمند مطالعات بیشتری است، لذا سعی شده است دراین تحقیقات بیشتربه جنبه انتقال حرارتی این گونه هندسه ها توجه گردد
2-1-رفتار جریان روی موانع
هنگامی که فشار در پایین دست جریان افزایش مییابد، ضخامت لایه مرزی به سرعت زیاد میشود. این گرادیان معکوس و نیروی برشی مرزی باعث کاهش اندازه حرکت در لایه مرزی خواهد شد و اگر هر دو عامل فوق در طول قابل توجهی از مسیر مؤثر باشند، سبب توقف لایه مرزی میشوند که این پدیده را جدایش مینامند. خطوط جریان مرزی در نقطه جدایش از مرز مربوطه جدا میشوند و در پایین دست این نقطه گرادیان فشار معکوس باعث برگشت جریان در مجاورت جداره میشود. ناحیه پایین دست خطوط جریان که از مرز جدا میشود موسوم به جریان برگشتی است. اثر جدایش، کاستن از مقدار خالص کاری است که یک جزء سیال میتواند بر سیال احاطه کننده خود با صرف نیروی جنبشی انجام دهد و در نهایت بازیافت فشار کامل نبوده و اتلافات (کشش) نیز افزایش مییابد.
همان گونه که میدانیم نیروهای کشش و برآ دو مولفه دارند نیروی کشش ناشی از شکل و نیروی کشش ناشی از اصطکاک پوستهای و یا نیروی کشش لزجتی. جدایش وجریان برگشتی که دو پدیده همراه هستند تأثیر عمیقی بر نیروی کشش ناشی از شکل دارند. اگر بتوان از تولید جدایش در هنگام عبور جریان از روی یک جسم جلوگیری کرده، لایه مرزی نازک باقی خواهند ماند و از کاهش فشار در ناحیه برگشتی جلوگیری خواهد شد و بدین وسیله نیروی کشش فشاری به حداقل مقدار خواهد رسید.]1[
ماهیتهای لایههای مرزی آرام- درهم نیز تأثیر مهمی بر موقعیت نقطه جدایش دارند در لایه مرزی درهم که انتقال اندازه حرکت بزرگتر است برای ایجاد جدایش باید گرادیان فشار معکوس بیشتر از لایه مرزی آرام باشد. به عنوان مثال رفتار جریان بر روی سیلندر استوانهای در اعداد رینولدز بسیار کم جریان بدون آن که از روی استوانه جدا شود و تشکیل گردابه دهد از روی آن عبور میکند. در مقادیر رینولدز پایین جدایش در لایه مرزی آرام اتفاق میافتد و یک جفت گردابه به صورت متقارن در پشت مانع تشکیل میشود. با افزایش عدد رینولدز رها شدن متناوب گردابه در پشت مانع به وجود میآید و خیابان گردابهای ونکارمن در پشت استوانه شکل میگیرد و سبب افزایش فشار منفی در پشت مانع میشود. در عدد رینولدز زیر بحرانی فرکانس رهایی گردابهها مستقل از عدد رینولدز است. این فرکانس را با یک عدد بدون بعد به نام عدد اشتروهال نشان میدهند]2[:
که در آن f فرکانس، d قطر استوانه و V سرعت جریان میباشد. با افزایش عدد رینولدز لایه مرزی آشفته میشود و جدایش در نقطهای نزدیکتر روی استوانه اتفاق میافتد.
در این پروژه هندسهای که مورد بررسی قرار گرفته مانع مربعی واقع در کانال میباشد که در حالتهای مختلف مورد بررسی قرار گرفته است.
4-1-تحریک لایه مرزی
در بیشتر کاربردهای مهندسی نیاز به افزایش و یا کاهش انتقال حرارت میباشد ولی مشکل اصلی در این موارد محدودیت کاهش یا افزایش سطح است. در چنین مواردی راهحل مناسب ایجاد تغییرات در ضریب انتقال حرارت است. ضریب انتقال حرارت جابهجایی به خواص سیال و ویژگیهای جریان سیال بستگی دارد. در خیلی از موارد نوع سیال قابل تغییر نیست و تنها عاملی که میتواند برای کنترل انتقال حرارت به کار رود ویژگیهای سیال میباشد. همان طور که میدانیم به علت وجود لزجت در کنار سطح جامد لایه مرزی تشکیل میشود. این لایه نقش یک لایه مقاوم در برابر انتقال حرارت را ایفا میکند. با تغییراتی جریان درون لایه مرزی میتوان ضریب انتقال حرارت را تغییر داد.
روشهای متعددی برای ایجاد این تغییرات مورد آزمایش و تحقیق قرار گرفته است و نتایج مختلفی حاصل گردیده است. مجموعه این تحقیقات با نام تحریک لایه مرزی شناخته میشود. از جمله پارامترهای مهم دیگری که از تحریک لایه مرزی برای ایجاد تغییرات در آن بهرهگیری میشود، ضریب اصطکاک میباشد.
اساس تحریک لایه مرزی بهرهگیری از پدیدههای مختلف سیالاتی نظیر نقطه سکون، گردابه جدایش لایه مرزی، ایجاد جت سیال درون لایه مرزی و ... میباشد. با استفاده از این پدیدهها الگوی جریان درون لایه مرزی به هم خورده و ضخامت لایه مرزی تغییر میکند. یک روش عمده برای ایجاد این پدیدهها استفاده از موانع خارجی درون لایه مرزی و یا ایجاد برجستگیها و فرورفتگیها بر روی خود سطح میباشد. بسته به هندسه مورد استفاده میتوان یک یا ترکیبی از این پدیدههای سیالی را به وجود آورد. هر یک از این پدیدهها اثر خاصی بر میزان ضریب انتقال حرارت، ضریب درگ مانع و همچنین صفحهای که مانع بر روی آن قرار گرفته است. ]1[
در زمینه استفاده از موانع برای تحریک لایه مرزی تحقیقات چندی صورت گرفته است. در برخی از تحقیقات سعی شده است با تغییر الگوی جریان در پشت موانع که معمولا با تولید گردابه میباشد ضریب انتقال حرارت و یا ضریب درگ مانع و همچنین صفحهای که مانع بر روی آن قرار گرفته تغییر داده شود.
فهرست مندرجات:
1-1- مقدمه......................................................................................................... 2
2-1-رفتار جریان روی موانع............................................................................ 3
4-1-تحریک لایه مرزی...................................................................................... 5
5-1-تاریخچه مطالعات و تحقیقات انجام شده.................................................... 7
7-1-هدف پروژه.............................................................................................. 11
فصل دوم: معادلات حاکم بر جریان
1-2-معادلات حاکم در جریان آرام................................................................. 13
2-2-توصیف فرآیندهای سیال و سادهسازی آنها......................................... 15
3-2-مفهوم جریان آرام................................................................................... 17
4-2-نیروهای برشی و فشاری........................................................................ 18
5-2- رابطه بین اصطکاک سیال و انتقال حرارت............................................. 19
6-2-مفهوم انفصال.......................................................................................... 19
7-2-طرح QUICK............................................................................................ 21
8-2-انفصال معادلات حاکم............................................................................. 26
1-8-2-انفصال جمله وابسته به زمان........................................................ 27
2-8-2- انفصال جملات جابهجایی.............................................................. 28
3-8-2-انفصال جملات پخش...................................................................... 30
4-8-2-ضرایب جبری معادله انفصال........................................................ 30
9-2-شبکه جابهجا شده.................................................................................... 33
10-2-الگوریتم سیمپل...................................................................................... 35
فصل سوم: اجرای برنامه توسط نرمافزار Fluent
1-3- مقدمه...................................................................................................... 41
2-3-تولیدهندسه مسئله درنرم افزارGambit))............................................... 41
اجرای برنامهFluent) )..........................................................................................
فصل چهارم: بررسی عملکرد برنامه و نتایج
4- مقدمه........................................................................................................... 57
1-4- بررسی نتایج حاصل از هندسه اول ...................................................... 58
1-1-4- بررسی توزیع عدد ناسلت موضعی در سطوح مختلف مانع مربعی... 58
2-1-4- بررسی تغییرات عدد ناسلت متوسط با افزایش عدد رنولدز روی سطوح مختلف مانع 63
3-1-4- بررسی متوسط عدد ناسلت روی کل سطح مانع مربعی................... 64
2-4- بررسی نتایج حاصله از هندسه دوم...................................................... 65
1-2-4- بررسی کانتورهای جریان................................................................. 65
2-2-4- تأثیر فاصله مانع از دیواره کانال بر عدد ناسلت............................... 73
3-2-4- تأثیر افزایش عدد رینولدز بر ناسلت میانگین..................................... 77
4-2-4- تأثیر مانع مربعی بر ضریب اصطکاک............................................... 79
3-4- بررسی نتایج حاصله از هندسه سوم..................................................... 86
1-3-4- بررسی تغییرات عدد ناسلت بر افزایش عدد رینولدز در نسبتهای متغیر 87
2-3-4- بررسی تغییرات عدد ناسلت متوسط بر حسب تغییر فاصله بین دو مانع.. 88
3-3-4- مقایسه ضریب درگ و برا برای موانع مربعی................................... 89
4-3-4- تأثیر افزایش فاصله موانع بر ضریب درگ....................................... 90
4-4- جمعبندی و نتایج..................................................................................... 94
5-4- پیشنهادات و کار های آینده.................................................................... 95
6-4- فهرست مراجع......................................................................
شامل 101 صفحه فایل word قابل ویرایش
لینک پرداخت و دانلود *پایین مطلب*
فرمت فایل:Word (قابل ویرایش و آماده پرینت)
تعداد صفحه14
فهرست مطالب
آب بند تزریقی
ترانشه ی آب بند
آب بند ناقص
آب بند سپری
آب بند سیمانی و پرده ی بتنی درجا
پوشش بالادست(upstream blanket)
مزایا و معایب آب بندها
نقش آب بند ها(cut off) در شالوده , جلوگیر ی از حرکت کامل آب و یا دست کم طولانی کردن مسیر آب می باشد که در این مورد از فشار تخریبی زه کاسته می گردد و به هر حال دبی کلّ زه کاهش می یابد . در این فصل به طور عمومی و خلاصه در مورد انواع معمول روش های آب بندی توضیح داده می شود.
1-1.عوامل مؤثّر در تزریق
تکنیک تزریق(grouting) امروزه در بسیاری از پروژه های ساختمانی ودر هدف های متنوّع مورد استفاده قرار می گیرد که در پاره ای موارد به منظور مستحکم کردن زمین ,کاهش دادن تأثیر ارتعاش در خاک و کاهش دادن نشست خاک در اثر بارهای دینامیک و استاتیک و اهدافی مشابه آنچه ذکر شد می باشد, و در مواردی به منظور جلوگیری از حرکت آب است که بر اساس همین هدف در سد سازی مورد استفاده است .
استفاده از تزریق در پروژه های سد سازی گاه به منظور پر کردن شکاف ها و غارهای درون سنگ های آهکی در ارتباط با مخزن سد می باشد و زمانی به منظور پر کردن حفره های درون خاک در کل یک محدوده ی آب بندی و زمانی به منظور تکمیل آب بندهای دیگر از قبیل آب بندهای پرده سپری می باشد.
در مورد آب بندی خاک ها توسّط تزریق ,این روش معمولاً در محیطی کارایی لازم را دارد که نفوذپذیری محیط قبل از تزریق از cm/sec001/0 بیشتر باشد.
تزریق مواد در درون حفره های بین دانه های خاک , ضمن آب بندی کردن آن به استحکام آن نیز کمک می کند .
موادی که در تزریق به کار می رود متنوّع بوده و معمول ترین آن ها شامل سیمان, آسفالت ,رس و مواد شیمیایی است که انتخاب نوع آن ها , عمق نفوذ آن ها , ترتیب و چگونگی تزریق و فشار آن بستگی به شرایط شالوده , نوع و وضعیت آن , ارتفاع سد و هدف از تزریق دارد. مثلاً نوع دانه بندی و اندازه ی دانه ها و نفوذپذیری خاک نقش مؤثّری در انتخاب نوع ماده ی تزریقی دارد . جدول زیر به عنوان نمونه حدود تقریبی اندازه ی دانه ها را در ارتباط با مناسب بودن برای نوع خاصی از ماده ی تزریقی نشان می دهد :
آشنایی
مهندسان برای کاستن از احتمال گسیختگیها ناشی از عملکرد آب زیرزمین، همواره درصدد اند تا بخش در حال حفاری را آبکشی و خشک نمایند. البته باید توجه داشت که کنترل نیروهای ناشی از نشت آب هم میتواند به همان اندازه در جلوگیری از گسیختگی موثر واقع شود. روشهای متنوعی را که برای کنترل نشت و فرار آب زیرزمینی وجود دارد، میتوان به سه دسته عمده تقسیم کرد که عبارتند از: آب بندها و موانع، سیستمهای آبکشی، زهکشها، صافیها (فیلترها).
آب بندها و موانعی را که بر سر راه جریان آب ایجاد میشود، میتوان به سه دسته آسترها و پوششها، دیوارها و تزریق تقسیم کرد.
آسترها و پوششها
آسترها و پوششها به صورت لایهای نفوذ ناپذیر اجرا میشوند و دارای انواع زیراند:
تعبیه ورقهای از رس که در بستر دریاچه (به سمت سراب) ایجاد میشود و وظیفه آن افزایش مسیر افقی جریان آب در زیر زمین و در نتیجه کاهش فشار آب و میران نشت آن در پاشنه پایاب سد است.
یک لایه (آستر) رسی یا پلاستیکی که برای جلوگیری از فرار آب از مخزن یا نشت سیالات از حمل تجمع زبالهها اجرا میشود.
دیوارها Walls
بسیار متنوع بوده و مهمترین انواع آن را به نحو زیر میتوان خلاصه کرد.
دیوار خاکی متراکم شده
این دیوارها میتوانند به عنوان یک خاکریز همگن برای سد، به صورت یک هسته در داخل سد یا ترانشهای در پی سد، که هسته آن با رس پر شده باشد، اجرا شوند.
دیواره های بتنی
این نوع دیوار معمولا در حفاری پی ها یا به عنوان پوشش داخل تونلها، مخصوصا در جاهایی که جلوگیری دایم از نفوذ آب لازم باشد، بکار میروند. در سدها برای جلوگیری از فرار آب از زیر سد، دیوار بتنی قایمی را از پایینترین قسمت سد تا لایههای نفوذ ناپذیر احداث میکنند.
دیوار با شمعهای صفحهای
این نوع دیوار، که با راندن شمعهای صفحهای به داخل خاک ایجاد میشود، موقعی از کارایی خوبی برخوردار است که قفل و بست بین صفحات کامل باشد و این مسئلهای است که در زمینهای دارای قلوه سنگ و قطعات درشت تر یا حاوی مواتع دیگر به خوبی امکان پذیر نیست. با افزایش طول شمعها، امکان خم شدن آنها در خلال راندن وجود دارد. این نوع دیوار تا حدی میتواند از نفوذ آب جلوگیری کند. این دیوار را معمولا برای نگاهداری دیواره بخشهای حفاری شده بکار میبرند. در خاکهای با زهکشی آزاد، دیوار باید همراه با یک سیستم آبکشی باشد تا فشار جانبی وارده از زمین و آب به دیوار شمعی کاهش یابد.
دیوارهای گلی
دیوارهای گلی و ترانشههای پر شده از گل به عنوان عاملی کارآمد برای جلوگیری از نشت آب در پی سدها، حفاریهای باز، حفاری تونلها و سیستمهای کنترل آلودگی، روز به روز مصرف بیشتری پیدا میکنند. روش احداث این دیوارها به جز در تونلها، به این ترتیب است که ابتدا یک ترانشه حفر میشود و برای اینکه دیوارهایی ترانشه در طول حفاری ریزش نکند، داخل آن را با گل روانی از بنتونیت پر میکنند. در پایان حفر ترانشه، این گل روان با موادی که بتواند یک دیوار دایمی و نسبتا غیرقابل تراکم و نفوذ ناپذیر را بسازد، تعویض میشود.
دیوار دیافراگمی
بتنی نوع سازه دایمی است که توسط تکنیک ترانشههای حاوی گل روان ایجاد میشود. به این منظور قطعهای از ترانشه تا عرض 7 متر را تا عمق دلخواه حفر میکنیم. در مرحله بعد یک شبکه (جوشن) فولادی پیش ساخته به داخل آن رانده میشود. در کلیه مراحل حفاری و راندن شبکه فولادی، ترانشه توسط گل روانی که داخل آن ریخته میشود، از ریزش محفوظ میماند. در مرحله بعد گل روان توسط بتن جایگزین میشود و پس از گرفتن بتن، قطعه بعدی اجرا میشود.
دیوارهای یخی
...
نوع فایل : WORD
تعداد صفحه :28