فایلکو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

فایلکو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

تحقیق تغذیه دی اکسید کربن

اختصاصی از فایلکو تحقیق تغذیه دی اکسید کربن دانلود با لینک مستقیم و پر سرعت .

تحقیق تغذیه دی اکسید کربن


تحقیق تغذیه دی اکسید کربن

لینک پرداخت و دانلود *پایین مطلب*

فرمت فایل:Word (قابل ویرایش و آماده پرینت)


تعداد صفحه:46

فهرست:

تغذیه دی اکسید کربن

 مقدار دی اکسید کربن موجود در هوا 0.03درصد و یا حدود 300پی پی ام  می باشد. (هر میلیون کیلوگرم هوا دارای 300کیلوگرم دی اکسید کربن می باشد ) در مناطق صنعتی , باتلاقی و بستر رودخانه ها حدود 400پی پی ام و در برخی مناطق 200 پی پی ام است . 

مقدار دی اکسد کربن موجود در هوا برای فتوسنتز کافی است.

کمبود دی اکسید کربن : در زمستان به علت مسدود بودن گلخانه , تبادلات هئای داخل گلخانه با محیط بیرون به حداقل می رسد و در ساعات آفتابی روز دی اکسید موجود در فضای گلخانه توسط فرآیند فتوسنتز از هوا گرفته شده و مقدار آن در گلخانه بسته مرتب کم می شود (کمتر از 200 پی پی ام ) که باعث کاهش فتوسنتز و توقف رشد می شود . یک برگ آفتابگردان در حال رشد , می تواند 2,4 متر در مدت یک ساعت مصرف کند . میزان دی اکسید کربن موجود در گلخانه بسته در عرض چند ساعت می تواند به نقطه بحرانی خود برسد ( پایین ترین حد ممکن ) و باعث بازماندن از رشد شود . مقدار بحرانی دی اکسید کربن 125- 25 پی پی ام است . ادامه کمبود دی اکسید کربن باعث طولانی شدن دوره کشت و کاهش کیفیت محصول می شود.

میزان دی اکسید کربن موجود در خاک بین 2500  - 2000 پی پی ام  متغیر است . منبع تولید این گاز در خاک


دانلود با لینک مستقیم


تحقیق تغذیه دی اکسید کربن

- نقش مواد فرار در احیای اکسید آهن توسط زغال سنگ کک نشو - امید گنجی

اختصاصی از فایلکو - نقش مواد فرار در احیای اکسید آهن توسط زغال سنگ کک نشو - امید گنجی دانلود با لینک مستقیم و پر سرعت .

چکیده مقاله:

یکی از روشهای تولید آهن اسفنجی، احیا توسط کربن جامد می باشد. امروزه با توجه به فراونی و ارزانی منابع زغال سنگ نسبت به منابع گازی، روش های احیا بر پایه زغال نسبت به روش های احیا بر پایه گاز روبه پیشرفت و گسترش می باشند. در این پژوهش از مواد فرار زغال سنگ برای احیای هماتیت تجاری استفاده شد. زغال سنگ انتخاب شده از نوع کک نشوی بیتومینه با فراریت بالا می باشد. لایه های هماتیت و زغال سنگ برای جلوگیری از احیای مشتقیم توسط کربن و کاهش نرخ خروج گازهای فرار، بوسیله لایه های بی اثر اکسید آلومینیوم از یکدیگر جدا شده و ازمایشات احیا در شرایط ایزوترم انجام شد . در این تحقیق پارامترهای دما، زمان، اندازه ذرات زغال سنگ و نسبت زغال سنگ به هماتیت بر فرایند احیا بررسی شد. آنالیز کمی و کیفی نمونه های بوسیله روش های XRD و ARF انجان شد.نتایج نشان داد که مواد فرار زغال سنگ می توانند در دمای 900 درجه سانتی گراد هماتیت را تا بیش از 50% احیا نمایند.نتایج آنالیزها همچنین نشان داد که احیای اکسیدهای آهن به صورت مرحله ای پیشرفت نموده است.

کلیدواژه‌ها:

احیای اکسید آهن، زغال سنگ کک نشو، مواد فرار


دانلود با لینک مستقیم


- نقش مواد فرار در احیای اکسید آهن توسط زغال سنگ کک نشو - امید گنجی

لایه های نازک اکسید قلع

اختصاصی از فایلکو لایه های نازک اکسید قلع دانلود با لینک مستقیم و پر سرعت .

لایه های نازک اکسید قلع

مقدمه ای کامل و جامع و بسیار مناسب برای پایان نامه های رشته فیزیک، شیمی، نانوفیزیک،نانوشیمی، مهندسی مواد و ...

حاصل از ترجمه مقالات ISI با 29 رفرنس معتبر - 36 صفحه فایل word با فهرست مطالب، جدولها و شکلها و با رعایت تمام نکات نگارشی

payannameht@gmail.com

فابلهای مرتبط:

اکسیدهای نیمرسانای شفاف

معرفی روشهای لایه نشانی، خواص و کاربردهای لایه های نازک

خواص لایه های نازک اکسید نیکل

خواص و کاربردهای نانو ذرات اکسید تیتانیوم

روش های سنتز نانوذرات 

 

مقدمه

فیزیک لایه ­های نازک، شاخه­ای از فیزیک حالت جامد است که در سال­های متمادی گسترش بسیاری یافته است، به طوری­که خواص سیستم های لایه نازک، که ضخامت آن­ها بسیار کوچک است و تقریباً آن­ها را  می­توان دو بعدی فرض کرد، به کمک این شاخه از فیزیک مورد بررسی قرار داد. خواص این سیستم­ها بسیار متفاوت از حالت حجمی آن­هاست. چرا که در یک نمونه حجیم هر یک از ذرات همواره تحت تأثیر نیروهایی هستند که از تمام جهات به آن­ها وارد می­شود، در حالی­که در لایه­های نازک چنین نیست و همین امر باعث می­شود حالت­های انرژی در این مواد متفاوت از حالت حجمی باشد. در طی 60 سال گذشته، لایه­های نازک اهمیت روزافزونی پیدا کرده­اند و ویژگی­های جالب آن­ها باعث شده است تا این سیستم­ها در زمینه­های اپتیک، اپتوالکترونیک، مغناطیس، میکروالکترونیک، ابررسانایی، نیمرساناها و.... کاربرد فراوانی داشته­ باشند[1].

مهم­ترین هدف محققان در تهیه انواع لایه­های نازک به­دست آوردن لایه­هایی با بهترین کیفیت، یکنواختی، رسانایی بالا، شفافیت اپتیکی مناسب و پایدارترین حالت شیمیایی و مکانیکی است. به  منظور رسیدن به این اهداف، عوامل موثر در فرایند تهیه لایه با بهینه سازی مناسب از اهمیت ویژه­ای برخوردارند. در تعیین خواص فیزیکی و شیمایی لایه­های نازک روش­های رشد لایه نقش اصلی را ایفا می­کنند. با روش­های لایه­نشانی مختلف برای یک ترکیب، می­توان خصوصیات الکتریکی، اپتیکی و ساختاری لایه­های تهیه شده را بهینه ساخت. بنابراین روش­های ساخت لایه­های نازک، شناخت عوامل موثر در حین لایه­نشانی و عملیات پس از آن بسیار با اهمیت می­باشند. روش­های تهیه لایه­های نازک به­طور کلی به دو دسته روش­های فیزیکی و شیمیایی تقسیم می­شوند [2]. از بین روش­های فیزیکی و شیمیایی، در روش شیمیایی لایه­های تهیه شده نظم بلوری بیشتری داشته و چسبندگی لایه­ها خیلی بهتر از روش­های فیزیکی می­باشند.

خواص الکتریکی و اپتیکی لایه­های نازک به نوع ناخالصی اضافه شده بستگی دارد. در این فصل با استفاده از مقالات و مراجع مختلف تأثیر ناخالصی­های مختلف، بر روی خواص فیزیکی لایه­های نازک اکسید قلع مطالعه خواهد شد.

 

مطالعه خواص فیزیکی لایه ­های نازک اکسید قلع، تهیه شده به روش­های لایه ­نشانی مختلف

1-2-1- اسپری پایرولیزیز

 

در سال 2013 میلادی توسط پروین بانو[1] و همکارانش لایه­های نازک SnO2 به روش اسپری پایرولزیز تهیه شد [3]. محلول از مقدار معینی  M)01/0( کلرید قلع 4 آبه به همراه آب مقطر دو بار یونیزه شده تهیه شد. برای جایگذاری لایه­ها از بسترهای شیشه­ای استفاده شد. شرایط جایگذاری لایه­ها در جدول (1-1) خلاصه شده است. شکل (1-1) تصویری از دستگاه اسپری پایرولیزیز را نشان می­دهد....

طرح­های پراش پرتو ایکس (XRD) لایه­ های جایگذاری شده را در دماهای مختلف ( 0C500  ،400،300 ) در شکل (1-2) نشان داده شده است. ثابت­های شبکه و اندازه بلورک­ها برای لایه نازک SnO2 در جدول (1-2) خلاصه شده است.....

 

2-2-1-روش کندوپاش واکنشی[1]

 

در سال 2009 جوی[2] و همکارانش لایه­های نازک اکسید قلع را به روش کندوپاش در دمای 0C400 و با توان­W 200 تهیه کردند [6]. این گروه خواص ساختاری، اپتیکی را گزارش کردند که جزییات کار این گروه در زیر آمده است.

لایه­نشانی با مخلوطی از گازهای Ar و O به نسبت (1:4) انجام شد. لایه­های نازک اکسید قلع تهیه شده به دو مجموعه تقسیم شدند. یک مجوعه شامل لایه­ای بود که  در دمای 0C 400 برای یک ساعت در هوا بازپخت شد و مجموعه دیگر شامل لایه­ای بود که بدون اثر بازپخت مورد بررسی قرار گرفت. شکل (1-6-(a)) و (b) طرح­های XRD  نمونه­ی تهیه شده قبل و بعد از بازپخت با توان W 200 را نشان می­دهد و در شکل (1-7) طرح XRD پودر  SnO2 خالص نشان داده شده است. مشاهده می­شود که در هر دو نمونه در جهت­های (110)، (101)، (211) جهت­گیری کرده­اند. در نمونه بازپخت شده جهت ارجح (110) شدت بیشتری دارد...

 

اندازه ذره با استفاده از فرمول شرر تعیین شد. قبل از بازپخت اندازه ذره nm 9/16 و بعد از بازپخت nm 9/18 محاسبه شد که افزایش اندازه ذره را بعد از بازپخت نشان می­دهد. شکل (1-8) تصاویر AFM لایه­ نازک SnO2 را قبل و بعد از بازپخت را نشان می­دهد. مشاهده می­شود که ذرات بعد از بازپخت بزرگتر شده­اند. در فرایند بازپخت، اتم­های لایه با بدست آوردن میزان کافی انرژی و با تغییر دادن موقیت خود، منجر به بهبود نظم بلوری می­شوند[7]....

 

3-2-1-روش تبخیر حرارتی[1]

لایه­های نازک اکسید قلع به روش تبخیر حرارتی نیز تهیه شده­اند. به عنوان مثال ایخمایس[2] در سال 2012 لایه­های نازک SnO2 را با این روش بر روی بسترهای شیشه­ای تهیه کرد و خواص ساختاری و اپتیکی این لایه­ها را مورد مطالعه قرار داد [8].

لایه­نشانی در سیستم با خلأ بالا  (10-5 mbar)انجام شد. آهنگ تبخیر و فاصله منبع تا بستر به ترتیب Å/s 10 و cm30 بود. شکل (1-10) طرح  XRD لایه­های نازک تهیه شده با ضخامت­های  nm200 و nm 600 را نشان می­دهد. همانطور که مشاهده می­شود لایه­های نازک SnO2  دارای ساختار آمورف می­باشند و در جهت­های (101) و (110) جهت­گیری کرده­ اند.

 .

.

.


مروری بر خواص فیزیکی لایه­های نازک اکسید قلع آلاییده شده با ناخالصی­های مختلف

1-3-1- مطالعه خواص فیزیکی لایه­های نازک اکسیدقلع آلاییده به فلوئور

در سال 2009 میلادی در تحقیق جدیدی، لایه­های نازک نانوساختار SnO2 با افزودن ناخالصی فلوئور (F) توسط مهلکر[1] و همکارانش، به روش اسپری پایرولیزیز[2] تهیه شد[12]. این گروه لایه­های نازک رسانای شفاف (0-60 wt%) SnO2:F را با استفاده از یک محلول آبی شامل کلرید قلع (SnCl4.5H2O) و آمونیوم فلوئورید (NH4F) بر روی بسترهای شیشه­ای که در دمای 0C475 قرار داشتند به روش اسپری پایرولیزیز تهیه کردند و تأثیر ناخالصی فلوئور را روی خواص فیزیکی لایه­های نازک SnO2 مورد مطالعه قرار دادند....

 

خواص ساختاری لایه­ های نازک SnO2:F

الگوهای پراش پرتو-X لایه­های نازک SnO2 و (0-60 wt%)   SnO2:F در شکل (1-15) نشان داده شده است. همه پیک­ها متعلق به فاز بس بلوری با پارامترهای شبکه a و c از Å 73/4 تا 74/4 و Å 17/3 تا 20/3 به ترتیب برای a و c است. صفحه (200) دارای بیشترین شدت است. این در حالی است که پیک­های دیگر مانند (100)، (110)، (220)، (310)، (301)، (400) با شدت کمتری مشاهده می­شوند. شدت صفحه (200) با افزایش تراکم ناخالصی فلوئور تا نسبتSnO2:F(20 wt%)  افزایش یافته است که با افزایش نسب وزنی بالاتر شدت آن کاهش پیدا کرده است.

با افزایش تراکم یونی فلوئور، تغییر قابل ملاحظه­ای در پارامتر شبکه مشاهده نشد که به­دلیل شعاع یونی کوچکتر F1- (1.17Å) در مقایسه با شعاع یونی O2-(1.22Å) است[15-13]....

عکس میکروسکوپ نیروی اتمی (AFM) دو بعدی برای لایه نازک (20 wt%) SnO2:F در شکل (1-17) نشان داده شده است. همان­طور که مشاهده می­شود لایه از ذرات مثلثی[1] شکل تشکیل شده است. میانگین اندازه ذرات 230 نانومتر می­باشد[12]....

خواص اپتیکی لایه­ های نازک SnO2:F

شفافیت اپتیکی لایه­های نازک SnO2:F  در شکل (1-18) نشان داده شده است. شفافیت اپتیکی لایه­ها در ناحیه مرئی در جدول (1-2) آورده شده است. همان­طور که مشاهده می­شود بیشترین شفافیت اپتیکی  در طول موج nm550 به لایه با ناخالصی FTO(20wt.%) مربوط می­شود. اما با افزایش تراکم ناخالصی فلوئور شفافیت اپتیکی لایه­ها کاهش می­یابد که تغییرات شفافیت لایه­ها به  تغییر چگالی حامل­های بار آزاد وابسته است. با رسم نمودار2  (αhν)بر حسب  hν مقدار گاف نواری حدودeV  15/4 محاسبه شده است....

 

 

فهرست مطالب

 خواص فیزیکی نیمرسانای اکسید شفاف SnO2 با ناخالصی­های مختلف 1

1-1: مقدمه 1

1-2: مطالعه خواص فیزیکی لایه­های نازک اکسید قلع تهیه شده به روش­های لایه­نشانی 2

1-2-1: اسپری پایرولیزیز 2

1-2-2: روش کندوپاش واکنشی 6

1-2-3: روش تبخیر حرارتی 8

1-3: مروری بر خواص فیزیکی لایه­های نازک اکسید قلع آلاییده شده با ناخالصی­های مختلف 12

1-3-1: مطالعه خواص فیزیکی لایه­های نازک اکسید قلع آلاییده به فلوئور 12

1-3-1-1: خواص ساختاری لایه­های نازک SnO2:F 13

1-3-1-2: خواص  اپتیکی لایه­های نازک SnO2:F16

1-3-2: مطالعه خواص فیزیکی لایه­های نازک اکسید قلع با ناخالصی آنتیموان 17

1-3-2-1: خواص ساختاری لایه­های نازک SnO2:Sb18

1-3-2-2: خواص اپتیکی لایه­های نازک SnO2:Sb20

1-3-2-3: خواص الکتریکی لایه­های نازک SnO2:Sb21

1-3-3: مطالعه خواص فیزیکی لایه­های نازک اکسید قلع با ناخالصی مس.22

1-3-3-1: خواص ساختاری لایه نازک SnO2:Cu22

1-3-3-2: خواص اپتیکی لایه نازک SnO2:Cu  23

1-3-3-3: آنالیز EDAX لایه نازک SnO2:Cu  24

1-3-4: مطالعه خواص فیزیکی لایه­های نازک نیمرسانای شفاف SnO2:Al25

1-3-4-1: خواص اپتیکی لایه­های نازک  SnO2:Al 25  

1-3-5: مطالعه خواص فیزیکی لایه­های نازک SnO2:(F+Sb)27

مراجع 30

 

  

فهرست جدول­ها

جدول 1-1: شرایط جایگذاری لایه­های نازک اکسید قلع ­ 2

جدول 1-2: تغییرات ثابت­های شبکه و اندازه بلورک­ها برای لایه نازک SnO2 در دماهای مختلف 4

جدول 1-3نتایج آنالیز عنصری EDAX لایه­های نازکSnO2 با ضخامت­های مختلف 10

جدول 1-4: مقادیر گاف نواری لایه­های نازک SnO2 11

جدول 1-5: نتایج اندازه­گیری­های الکتریکی، اپتیکی و ساختاری لایه­های نازکF :SnO2 14

جدول 1-6: پارامترهای گوناگون محاسبه شده برای لایه نازکSb: SnO2اسپری شده با حجم­های مختلف 19

جدول 1-7:ویژگی­های الکتریکی اندازه گیری شده لایه­های نازک Al: SnO2 27

جدول 1-8: ­اطلاعات XRD لایه(F+Sb)  : SnO2 28

جدول 1-9: ثابت­های شبکه لایه(F+Sb)  :  SnO2 ­ 29

جدول 1-10: نتایج اندازه­گیری الکتریکی لایه(F+Sb) : SnO2   29

 

 

فهرست شکل­ها

شکل 1-1:تصویری ازدستگاه اسپری پایرولیزیز 3

شکل 1-2:طرح­های XRD لایه­های SnO2 دردماهای مختلف :(a) 0C300، (b) 0C400،0C (c)500 3

شکل 1-3: طیف EDAX لایه نازک  SnO2دردمای0C400 4

شکل 1-4: عکس SEM لایه نازک SnO2 5

شکل 1-5: گاف نواری لایه­های نازک SnO2 5

شکل 1-6:طیف­های XRDلایه­هایSnO2 (a) بدون باز پخت ،  (b)بابازپخت 6

شکل 1-7:طیف XRD پودر   SnO2خالص 7

شکل 1-8: تصاویر AFM لایه نازک SnO2 (a) قبل، (b) بعد از بازپخت 7

شکل 1-9: شفافیت اپتیکی لایه­های نازک SnO2 8

شکل1-10 طرح­های XRD لایه­های نازک SnO2 با ضخامت­های (a) nm200، (b) nm 600. 9

شکل1-11عکس­های SEM لایه­های نازک SnO2 با ضخامت­های (a) nm 300، (b) nm 400 9

شکل 1-12: طیف­های EDAX لایه­های نازک SnO2  با ضخامت­های (a) nm 300، (b) nm 400 10

شکل 1-13: شفافیت اپتیکی لایه­های نازک SnO2 با ضخامت­های مختلف . 11

شکل 1-14: گاف نواری لایه­های نازک  SnO2. 12

شکل 1-15: : طرح­های پراش پرتو ایکس لایه­های نازک(0-60 WT%) SnO2:F 13

شکل 1-16: عکس­های SEM لایه­های نازک (0-60 WT%)  SnO2:F 15

شکل 1-17: عکس­ AFM دو بعدی برای لایه نازک F(20%):SnO2   15

شکل 1-18: طیف عبور لایه­های نازکFTO  با مقادیر مختلف ناخالصی فلوئور   16

شکل 1-19: تغییرات چگالی حامل و تحرک­پذیری لایه نازک FTO با مقادیر مختلف ناخالصی فلوئور 17

شکل 1-20: طرح­های XRD لایه­های SnO2:Sb برای جحم­های مختلف محلول اسپری 18

شکل 1-21: تغییرات اندازه میانگین بلورک برای لایه نازک SnO2:Sb با حجم محلول مختلف 19

شکل1-22تصاویر SEM لایه­های نازک SnO2:Sb برای (a)  cc 20، (b)  cc30، (c) cc 40 20

شکل 1-23: تغییرات عبور  با طول موج برای لایه­های SnO2:Sb 20

شکل 1-24: طرح پراش لایه نازک SnO2:Cu 22

شکل 1-25: تصویر SEM لایه SnO2:Cu  23

شکل 1-26: شفافیت اپتیکی لایه نازک SnO2:Cu 23

شکل 1-27: گاف نواری لایه نازک SnO2:Cu 24

شکل 1-28: طیف EDAX لایه نازک SnO2:Cu 25

شکل 1-29: (a) طیف عبور لایه­های نازک SnO2:Al 26

شکل 1-29: (b) گاف نواری لایه­های نازک SnO2:Al 26

شکل 1-30: طیف XRD لایه ( wt%5/0+10) SnO2: (F+Sb) 28


دانلود با لینک مستقیم


لایه های نازک اکسید قلع

دانلود مقاله مسمومیت با اکسید کربن یا گاز زغال

اختصاصی از فایلکو دانلود مقاله مسمومیت با اکسید کربن یا گاز زغال دانلود با لینک مستقیم و پر سرعت .

دانلود مقاله مسمومیت با اکسید کربن یا گاز زغال


دانلود مقاله مسمومیت با اکسید کربن یا گاز زغال

 

 

 

 

 

 

مسمومیت با اکسید کربن یا گاز زغال

دکتر صمد قضائی

از اجسادی که برای کالبدگشایی به پزشکی قانونی آورده می شوند می توان اجساد مسمومین با گاز زغال یا اکسید کربن را نام برد، اجساد کسانی که غالباً مظلومانه و بناحق در اثر غلفت و نادانی خود یا برخی اوقات بطور حادثی و بالاحییاد در اثر تنفس کردن گاز اکسیدکربن یا گاز زغال در گذشته اند از آنجایی بالاجبار که اکثر این مرگها قابل اجتناب وناحق بوده و بطور غم انگیزی افراد بیگناه و مظلوم وغالباً بی اطلاع و غافل را از بین می برند جای آن هست که در شناسانیدن این مسمومیت و مطلع گردانیدن مردم عادی از خطرات آن اقدام جدی بعمل آید .

گفتیم که این مرگها ناشی از مسمومیت حاصل از استنشاق گاز اکسید کربن یا باصطلاح گاز زغال می باشند که درتمام محیطهای زندگی وکاری کم وبیش وجود دارد .

گاز اکسید کربن در اثر سوختن ناقص مواد کربن دار حاصل میشود وتمام مواد سوختنی محتوی کربن می باشند از قبیل زغال ، چوب ، نفت، گازاویل ، مازوت و غیره بدین ترتیب این گاز در تمام کانونهای سوخت و احتراق بوجود می آید : منقل، بخاری، اجاق کوره ، آب گرم کن موتور اتومبیل و غیره بعلاوه مواد قابل انفجاری مانند باروت و تی ان تی و غیره بعلت دارا بودن کربن بعد از انفجار مقدار زیادی اکسید کربن بوجود می آورند .

ظاهراً سوختن کامل مواد سوختنی فوق الذکر نباید تولید اکسید کربن ( CO) بکند بلکه طبق فرمول زیر باید گازکربنیک ( C O2 )بوجود بیاورد ولی اگر سوخت ناقص بود و اکسیژن کم باشد تولید اکسیدکربن ( C O ) می گردد ولی درعمل نه تنها در موارد ناقص سوخت این مواد ( معیوب بودن دستگاه ) اکسید کربن بوجود می آید بلکه بعد از سوخت کامل و در بهترین شرایط وسالمترین دستگاهها نیز باز اکسیدکربن درست می شود که ناشی از یک پدیده شیمیایی بنام ( ردو کسیونآندوترمیک ) می باشد که آن به علت حرارت زیاد گاز کربنیک ( CO2 ) حاصل از سوخت کامل تبدیل به اکسید کربن ( CO ) می گردد بطوریکه طبق نظریه کن آبرست در بهترین وسالمترین وسایل سوخت حداقل یکصدم گازها حاصل از احتراق اکسید کربن می باشد یعنی نسبت اکسید کربن ( CO ) به گاز کربنیک ( CO2 ) حداقل یکصدم می باشد بدین ترتیب مشاهده می شودکه هیچ کانون سوخت وسوزی ولو سالم و بی عیب که به رنگ وشکل و وضع مطلوب هم بسوزد بدون تولید اکسید کربن نخواهد بود تا چه رسد به اینکه معیوب وناسالم بوده و کامل هم نسوزد که در این صورت مقدار اکسید کربن تولید شده خیلی زیاد خواهد بود . اکسید کربن گاز بی رنگ و بویی است که کمی سبک تر از هوا بوده و فوق العاده سمی و خطرناک می باشد و به طرز دردناکی از انسانهای بی گناه قربانی می گیرد .

کسانی که در اطاق با در و پنجره بسته می خوابند ویک منقل آتش زغال یا یک اجاق یا بخاری دستی را ( که دودکش ندارد ) روشن می گذارند، چه نفتی ، گازی یا زغالی و غیره گازهای حاصله از سوخت در فضای اتاق پخش می شود واکسید کربن موجود در آن افرادی را که در آن اتاق خوابیده اند مسموم می سازد بطوریکه به هنگام صبحدم طلیعه صبح برای آنان شام زندگی می شود غالباً کودکان و افراد مسن یا بیماران به سهولت و به سرعت جان به جان آفرین تسلیم می کنند و افراد سالم و جوان و قوی به حال اغماء و بیهوشی می افتند که بعضی اوقات در صورت درمان سریع و صحیح از مرگ نجات می یابند ( غالباً با باقی ماندن ضایعاتی بویژه ضایعات عصبی ، روانی ) .

یا کودکان معصومی که زیر کرسی می خوابانند در حالی که منقل پر از آتش زغال در زیر آن قرار داده اند صبح با جسد بی جان کودک معصوم روبرو می شوند . بعضی اوقات آبگرمکن حمام را روشن کرده مشغول استحمام می شوند درحالی که عیب و نقصی در سیستم سوختن وجود داشته ومقداری از گازهای حاصله از سوختن نفت یا گاز وارد فضای حمام می گردد یا گاهی در حمام جهت گرم کردن آن بخاری دستی قرار می دهند و آن فضا را آلوده می کنند بطوری که حمام به پایان نرسیده حیات حمام کننده به پایان می رسد .

تعداد صفحه :7


دانلود با لینک مستقیم


اثر پارامترهای سنتز بر روی خواص ساختاری و اپتیکی نانوساختارهای اکسید تیتانیوم

اختصاصی از فایلکو اثر پارامترهای سنتز بر روی خواص ساختاری و اپتیکی نانوساختارهای اکسید تیتانیوم دانلود با لینک مستقیم و پر سرعت .

اثر پارامترهای سنتز بر روی خواص ساختاری و اپتیکی نانوساختارهای اکسید تیتانیوم

مقدمه ای کامل و جامع و بسیار مناسب برای پایان نامه

حاصل از ترجمه مقالات معتبر خارجی - 43 صفحه فایل word با فهرست مطالب، جدولها و شکلها و با رعایت تمام نکات نگارشی

payannameht@gmail.com

فایلهای مرتبط :

خواص و کاربردهای نانو ذرات اکسید تیتانیوم

روشهای سنتز نانو ذرات اکسید تیتانیوم و لایه های نازک اکسید تیتانیوم

 

مقدمه

در کاربردهای مختلف این مواد، روش­های سنتز نانوساختارها و پارامترهای موثر در هر روش نقش بسیار مهمی دارند. در این فصل به بررسی و مطالعه اثر پارامترهای مهم در سنتز نانوذرات و لایه­های نازک اکسید تیتانیوم به روش سل ژل و اسپری پایرولیزیز می­پردازیم.

 

 

3-1- بررسی پارامترهای موثر بر روی خواص نانوساختارهای اکسید تیتانیوم تهیه شده به روش سل- ژل

3-1-1- نقش عامل کمپلکس­ساز

بطور کلی با کنترل فرایند تبدیل سل به ژل می­توان اندازه و شکل ذرات را کنترل کرد .در روش سل ژل اگر تعداد بیشتری از یون­های فلزی در محلول اولیه توسط عامل کمپلکس­ساز به کی­لیت تبدیل شوند، در نهایت ژل همگن­تری خواهیم داشت. بنابراین نوع وغلظت عامل کمپلکس­ساز در سنتز نانوساختارهایی یکنواخت مهم خواهد بود. در مقالاتی که گزارش خواهیم کرد، نقش این پارامتر مهم را بر روی خواص ساختاری نانوساختارهای دی­اکسید تیتانیوم بررسی می­کنیم.

3-1-1-1- سنتز نانوذرات تیتانیا با حضور عامل کمپلکس­ساز مختلف به روش سل­ژل

یوکاوا[1]و همکارنش توانستند با پیش­ماده تیتانیوم تترا ایزوپروپکساید (TTIP) در دمای پایین، نانوذرات دی­اکسیدتیتانیوم را با فاز آناتاس و روتایل سنتز کنند [1]. آن­ها نشان دادند که حضور گروه­های هیدروکسیل (-OH) در عامل­های کمپلکس­ساز واکنش­های هیدرولیز را کنترل کرده و با افزایش تعداد اتم­های کربن و گروه­های  OHبرهمکنش بین عامل کمپلکس­ساز و یون­های Ti+4 افزایش می­یابد. در این تحقیق، از چهار پلی­ال متفاوت بعنوان عامل کمپلکس­ساز استفاده کرده و اثر تغییر غلظت آن­ها را روی گذار فاز، مورفولوژی و اندازه ذرات بررسی کرده­اند.

 در اینجا نتایج بدست آمده از عامل­های کمپلکس­ساز اتیلن­گلیکول[2][HOCH2CH2OH] و دی­مانیتول[3] [HOCH2CH(OH)CH(OH)CH(OH)CH(OH)CH2OH] را گزارش خواهیم کرد.

- روش تهیه نانوذرات TiO2

30 درصد وزنی محلول H2O2 به 10 میلی لیتر از محلول 1 مولار اتانول حاویTTIP  که نسبت مولی آن با آب اکسیژنه برابر 12:1 است اضافه شده است. سپس محلول بدست آمده، هر بار با 100 میلی لیتر اتیلن گلیکول و دی­مانیتول رقیق شده است. غلظت پلی­ال­ها از mol/l0 تا 5 تغییر داده شده­اند. محلول در دمای 95 به­مدت 24 ساعت حرارت­دهی شد. سپس برای حذف ترکیبات آلی، فرآیند پراکنده­سازی ژل در 500 میلی لیتر آب مقطر در دمای 75 برای 1 ساعت انجام شده است. عملیات شستشو ژل تا 3 بار تکرار شد، سپس ژل را از آب جدا کرده و در دمای95 برای 12 ساعت در اتمسفر قرار داده­اند تا خشک گردد.

طیف­های پراش پرتو X (شکل 3-1-الف) در غیاب اتیلن­گلیکول، حضور ترکیبی از فاز آناتاس و روتایل را در نمونه­های تهیه شده نشان می­دهند. با افزایش غلظت اتیلن گلیکول از شدت پیک­های متعلق به فاز روتایل کاسته...

.

.

 

 

 

فهرست مطالب

عنوان                                                                                           صفحه

 

 

فصل سوم: مطالعه پارامترهای سنتز بر روی خواص ساختاری و اپتیکی نانوساختارهای اکسید تیتانیوم   1

3-1- بررسی پارامترهای موثر بر روی خواص نانوساختارهای اکسید تیتانیوم تهیه شده به روش سل- ژل.. 1

3-1-1- نقش عامل کمپلکس ساز 1

3-1-1-1- سنتز نانوذرات تیتانیا با حضور عامل کمپلکس ساز مختلف به روش سل ژل.. 2

3-1-1-2- مقایسه عملکرد عامل های کمپلکس ساز در تهیه لایه های نازک TiO2 به روش سل ژل.. 5

3-1-2- نقش حلال.. 13

3-1-3- اثر دمای بازپخت... 19

3-1-4- تغییر نسبت آب به آلکوکسید. 23

3-1-5- نوع کاتالیزور 26

3-1-6- اثر pH.. 27

3-2- بررسی پارامترهای موثر بر روی خواص لایه های نازک اکسید تیتانیوم تهیه شده به روش اسپری پایرولیزیز  30

3-2-1- اثر روش لایه نشانی (اسپری پایرولیزیز و مگنترون اسپاترینگ) بر روی خواص ساختاری، اپتیکی و فوتوکاتالیستی TiO2 30

3-2-2- بررسی خواص لایه های نازک تهیه شده به روش اسپری پایرولیزیز با تغییردمای بستر و تغییر زیرلایه  34

 مراجع. 38

 

 

 

 

 

فهرست جدول­ها

 

عنوان و شماره                                                                              صفحه

 

جدول3-1: ترکیب فاز لایه ها بصورت تابعی از دما برای هر عامل کمپلکس ساز (با استفاده از داده های رامان) 10

جدول3-2: ترکیب فاز لایه ها بصورت تابعی از دما برای هر عامل کمپلکس ساز و اندازه ذرات محاسبه شده با فرمول دبی-شرر.(با استفاده از داده های XRD) 11

جدول3-3: ترکیب و شکل ظاهری رسوب تیتانیا با حلال های مختلف... 15

جدول3-4: میانگین اندازه بلورک ها با رابطه شرر 17

جدول3-5: نتایج اندازه گیری های XRD و تعیین اندازه بلورک ها با رابطه شرر 22

جدول3-6: مساحت سطح موثر نانوذرات تیتانیا در دماهای بازپخت مختلف... 23

جدول3-7: مساحت سطح موثر پودر تیتانیا در درجه هیدرولیز متفاوت با کاتالیزور مختلف 25

جدول3-8: رابطه بین تعدادی از خواص فیزیکی فیلم  TiO2و پارامترهای لایه نشانی به روش اسپاترینگ... 32

جدول3-9: رابطه بین تعدادی از خواص فیزیکی فیلم  TiO2و پارامترهای لایه نشانی به روش اسپری پایرولیزیز 32

جدول3-10: شرایط لایه نشانی و خواص فیزیکی لایه های آناتاس بر روی بستر کوارتز و (100) Si 35

 

فهرست شکل­ها

 

عنوان                                                                                           صفحه

 

 

شکل3-1: طیف XRD پودر تیتانیا تهیه شده در دمای K 368 به مدت h 24 با عامل کمپلکس ساز الف: اتیلن گلیکول در غلظت (a) mol/l0، (b) mol/l 1، (c) mol/l2 (d) mol/l5. 4

شکل3-2: حضور نسبی فاز آناتاس بر حسب غلظت های عامل کمپلکس ساز. ○: دی مانیتول، ∆: اتیلن گلیکول  4

شکل3-3: مساحت سطح موثر (SBET) نانوپودر TiO2 برحسب غلظت پلی ال. ○: دی مانیتول، : اتیلن گلیکول.. 5

شکل3-4: تصاویر FE-SEM با عامل کمپلکس ساز دی مانیتول در غلظت های.. 5

شکل3-5: رابطه بین غلظت دی مانیتول و مقدار کربن.. 6

شکل3-6: طیف IR فیلم TiO2 در دماهای مختلف با عامل (الف) DEA، (ب)  AcAc. 8

شکل3-7: طیف IR فیلم TiO2 در دماهای مختلف با عامل DEA+AcAc. 9

شکل3-8: طیف رامان لایه های TiO2 در دماهای مختلف با عامل (a)AcAc ، (b)PEG + AcAc. نماد A متعلق به فاز آناتاس و R متعلق به فاز روتایل   10

شکل3-9: طیف های XRD فیلم های TiO2 با عامل های کمپلکس ساز مختلف در دمای (a) C˚500 و (b) C˚800  11

شکل3-10: طیف IR محلول اولیه شامل عامل کمپلکس ساز (1) DEA، (2) TEA، (3) AcAc، (4) H3L و (5) HAC 12

شکل3-11: تصاویر  SEMو مورفولوژی سطوح لایههای نازک با عامل کمپلکس ساز (a) DEA، (b) TEA، (c) AcAc، (d) HAC و (e) H3L. با حلال (a-e) EtOH و (f) n- butanol 12

شکل3-12: استیل استن در دو شکل شیمیایی.. 15

شکل3-13: شکل گیری کی لیت بین استیل استن و تیتانیوم ایزوپروپکساید. 15

شکل3-14: طیف FTIR رسوب تیتانیا (a) در حضور عامل کمپلکس ساز 16

شکل3-15: طیف XRD رسوب تیتانیا بدون عملیات حرارتی (a) با حلال استن (b) با حلال هگزان (c) باحلال استن بدون عامل کمپلکس ساز. با انجام عملیات حرارتی در دمای C˚450 برای 1 ساعت (d) با حلال استن 17

شکل3-16: تصاویر SEM رسوب تیتانیا با حلال (a) استن، (b) بوتانول.. 18

شکل3-17: تصاویر SEM رسوب تیتانیا ، با حلال (a) تولوئن و (b) هگزان، با بزرگنمایی زیاد 18

شکل3-18: عکس های TEM (a) سل کلوئیدی با ذرات TiO2، (b) ژل بدون آب (c) ژل خشک بازپخت شده در دمای C˚400 برای 2 ساعت 20

شکل3-19: الگوی پراش پرتو x اکسید تیتانیوم (a) قبل و بعد از بازپخت در دمای (b) C˚400، (c) C˚500، (d) C˚600 و (e) C˚700 21

شکل3-20 (a-d): طیف های  XRDنانوپودر تیتانیا بازپخت شده در دماهای مختلف با کاتالیزور HCL و نسبت آب 1x= (a)، 2x= (b)، 3x= (c)، 4x= (d). نماد A متعلق به فاز آناتاس و R متعلق به فاز روتایل 23

شکل3-21: تغییر اندازه بلورک ها با افزایش دمای بازپخت در (a) 2x= و (b) 4x= 23

شکل3-22: تغییر اندازه بلورک ها با افزایش دمای بازپخت دردرجه هیدرولیز مختلف 24

شکل3-23: تصاویر  TEMنانوذرات تیتانیا (a) سنتز شده در 1x= (b) سنتز شده در 4x= (c) بازپخت شده در دمای C˚400 برای 2 ساعت در 4x= 25

شکل3-24: طیف  XRDپودر تیتانیا در دماهای بازپخت مختلف و با کاتالیزور استیل استن. نماد A متعلق به فاز آناتاس و R متعلق به فاز روتایل 26

شکل3-25: طیف XRD پودر TiO2 بازپخت شده در دمای C˚400 برای 2 ساعت در pH (a)2، (b)4، (c)6 27

شکل3-26: عکس های  SEMپودر TiO2 بازپخت شده در دمای C˚400 برای 2 ساعت در pH (a)2، (b)4، (c)6 27

شکل3-27: طیف XRD پودر TiO2 بازپخت شده در دمای C˚800 برای 2 ساعت در pH (a)2، (b)4، (c)6 28

شکل3-28: عکس های  SEMپودر TiO2 بازپخت شده در دمای C˚800 برای 2 ساعت در pH (a)2، (b)4، (c)6 28

شکل3-29: طیف XRD فیلم TiO2 تهیه شده به روش (a) اسپاترینگ (b) اسپری پایرولیزیز 30

شکل3-30: طیف عبور اپتیکی فیلم  TiO2سنتز شده به روش (a) اسپاترینگ (b) اسپری پایرولیزیز 31

شکل3-31: تغییرات جذب متیلن آبی (ABS ) روی سطح فیلم TiO2 بر حسب پارامترهای لایه­نشانی در دو روش اسپاترینگ و اسپری پایرولیزیز 32

شکل3-32: درصد عبور لایه های TiO2 آغشته به متیلن آبی بصورت تابعی از زمان نوردهی در دو روش اسپاترینگ و اسپری پایرولیزیز  32

شکل3-33: طیف XRD فیلم TiO2 در دمای بستر (a) C˚250، (b) 400، (c) 500 . 34

شکل3-34: تصاویر AFM (a,b) C˚250Ts=، (c,d) C˚400Ts=، (e,f) C˚500Ts= 35

شکل3-35: تصویر  SEMلایه های TiO2 تهیه شده در دمای بستر (a) C˚250، (b) 400، (c) 500 ........ 36

شکل3-36: ضریب جذب و گاف غیرمستقیم لایه های نشانده شده روی بستر کوارتز 36


دانلود با لینک مستقیم